971 resultados para INTERACTION CROSS-SECTIONS
Resumo:
The shell effect is included in the improved isospin dependent quantum molecular dynamics model in which the shell correction energy of the system is calculated by using the deformed two-center shell model. A switch function is introduced to connect the shell correction energy of the projectile and the target with that of the compound nucleus during the dynamical fusion process. It is found that the calculated capture cross sections reproduce the experimental data quantitatively at the energy near the Coulomb barrier. The capture cross sections for reaction (35) (80) Br + (82) (208) Pb -> (117) (288) X are also calculated and discussed.
Resumo:
There can be found some notable discrepancies with regard to the resonance structures when R-matrix calculations from the Opacity Project and other sources are compared with recent absolute experimental measurements of Bizau et al [Astron. Astrophts. 439 387 (2005)] for B-like ions N2+, O3+ and F4+. We performed close-coupling calculations based on the R-matrix formalism for the photoionizations of ions mentioned above both for the ground states and first excited states in the near threshold regions. The present results are compared with experimental ones given by Bizau et al and earlier theoretical ones. Excellent agreement is obtained between our theoretical results and the experimental photoionization cross sections. The present calculations show a significant improvement over the previous theoretical results.
Resumo:
A simple model has been developed within the independent-particle model (IPM) based on the Bohr-Lindhard model and classical statistical model. Cross sections for transfer ionization of helium by ions A(q+) (q = 1-3) are calculated for impact energies between 10 and 6000 keV/u. The calculated cross sections are in good agreement with the experimental data of helium by He(1-2)+ and Li(1-3)+.