255 resultados para INFECTIVITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of attenuated vaccines for the prevention of chicken coccidiosis has increased exponentially in recent years. In Eimeria infections, protective immunity is thought to rely on a strong cell mediated response with antibodies supposedly playing a minor role. However, under certain conditions antibodies seem to be significant in protection. Furthermore, antibodies could be useful for monitoring natural exposure of flocks to Eimeria spp. and for monitoring the infectivity of live vaccines. Our objective was to investigate the chicken antibody response to the different parasite lifecycle stages following infection with an attenuated strain of Eimeria tenella. Western blotting analysis of parasite antigens prepared from the lining of caeca infected with the attenuated strain of E. tenella revealed two dominant antigens of 32 and 34 kDa, apparently associated with trophozoites and merozoites that were present at high concentrations between 84 and 132 h post-infection. When cryosections of caeca infected with E. tenella were probed with IgY purified from immune birds the most intense reaction was observed with the asexual stages. Western blotting analysis of proteins of purified sporozoites and third generation merozoites and absorption of stage-specific antibodies from sera suggested that a large proportion of antigens is shared by the two stages. The time-courses of the antibody response to sporozoite and merozoite antigens were similar but varied depending on the inoculation regime and the degree of oocyst recirculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two reliable small-plant bioassays were developed using tissue-cultured banana, resulting in consistent symptom expression and infection by Fusarium oxysporum f. sp. cubense (Foc). One bioassay was based on providing a constant watertable within a closed pot and the second used free-draining pots. Culture medium for spore generation influenced infectivity of Foc. Inoculation of potted banana by drenching potting mix with a conidial suspension, consisting mostly of microconidia, few macroconidia and no chlamydospores, generated from one-quarter-strength potato dextrose agar + streptomycin sulfate, resulted in inconsistent infection. When a conidial suspension that consisted of all three spore types, microconidia, macroconidia and chlamydospores, prepared from spores generated on carnation leaf agar was used, all plants became infected, indicating that the spore type present in conidial suspensions may contribute to inconsistency of infection. Inconsistency of infection was not due to loss of virulence of the pathogen in culture. Millet grain precolonised by Foc as a source of inoculum resulted in consistent infection between replicate plants. Sorghum was not a suitable grain for preparation of inoculum as it was observed to discolour roots and has the potential to stunt root growth, possibly due to the release of phytotoxins. For the modified closed-pot system, a pasteurised potting mix consisting of equal parts of bedding sand, perlite and vermiculite plus 1 g/L Triabon slow release fertiliser was suitable for plant growth and promoted capillary movement of water through the potting mix profile. A suitable potting mix for the free-draining pot system was also developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene therapy is a promising novel approach for treating cancers resistant to or escaping currently available modalities. Treatment approaches are based on taking advantage of molecular differences between normal and tumor cells. Various strategies are currently in clinical development with adenoviruses as the most popular vehicle. Recent developments include improving targeting strategies for gene delivery to tumor cells with tumor specific promoters or infectivity enhancement. A rapidly developing field is as well replication competent agents, which allow improved tumor penetration and local amplification of the anti-tumor effect. Adenoviral cancer gene therapy approaches lack cross-resistance with other treatment options and therefore synergistic effects are possible. This study focused on development of adenoviral vectors suitable for treatment of various gynecologic cancer types, describing the development of the field from non-replicating adenoviral vectors to multiple-modified conditional replicating viruses. Transcriptional targeting of gynecologic cancer cells by the use of the promoter of vascular endothelial growth factor receptor type 1 (flt-1) was evaluated. Flt-1 is not expressed in the liver and thus an ideal promoter for transcriptional targeting of adenoviruses. Our studies implied that the flt-1 promoter is active in teratocarcinomas.and therefore a good candidate for development of oncolytic adenoviruses for treatment of this often problematic disease with then poor outcome. A tropism modified conditionally replicating adenovirus (CRAd), Ad5-Δ24RGD, was studied in gynecologic cancers. Ad5-Δ24RGD is an adenovirus selectively replication competent in cells defective in the p16/Rb pathway, including many or most tumor cells. The fiber of Ad5-Δ24RGD contains an integrin binding arginine-glycine-aspartic acid motif (RGD-4C), allowing coxackie-adenovirus receptor independent infection of cancer cells. This approach is attractive because expression levels of CAR are highly variable and often low on primary gynecological cancer cells. Oncolysis could be shown for a wide variety of ovarian and cervical cancer cell lines as well as primary ovarian cancer cell spheroids, a novel system developed for in vitro analysis of CRAds on primary tumor substrates. Biodistribution was evaluated and preclinical safety data was obtained by demonstrating lack of replication in human peripheral blood mononuclear cells. The efficicacy of Ad5-Δ24RGD was shown in different orthotopic murine models including a highly aggressive intraperitoneal model of disseminated ovarian cancer cells, where Ad5-Δ24RGD resulted in complete eradication of intraperitoneal disease in half of the mice. To further improve the selectivity and specificity of CRAds, triple-targeted oncolytic adenoviruses were cloned, featuring the cyclo-oxygenase-2 (cox-2) promoter, E1A transcomplementation and serotype chimerism. Those viruses were evaluated on ovarian cancer cells for specificity and oncolytic potency with regard to two different cox2 versions and three different variants of E1A (wild type, delta24 and delta2delta24). Ad5/3cox2Ld24 emerged as the best combination due to enhanced selectivity without potency lost in vitro or in an aggressive intraperitoneal orthotopic ovarian tumor model. In summary, the preclinical therapeutic efficacy of the CRAds tested in this study, taken together with promising biodistribution and safety data, suggest that these CRAds are interesting candidates for translation into clinical trials for gynecologic cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Symmetry is a key principle in viral structures, especially the protein capsid shells. However, symmetry mismatches are very common, and often correlate with dynamic functionality of biological significance. The three-dimensional structures of two isometric viruses, bacteriophage phi8 and the archaeal virus SH1 were reconstructed using electron cryo-microscopy. Two image reconstruction methods were used: the classical icosahedral method yielded high resolution models for the symmetrical parts of the structures, and a novel asymmetric in-situ reconstruction method allowed us to resolve the symmetry mismatches at the vertices of the viruses. Evidence was found that the hexameric packaging enzyme at the vertices of phi8 does not rotate relative to the capsid. The large two-fold symmetric spikes of SH1 were found not to be responsible for infectivity. Both virus structures provided insight into the evolution of viruses. Comparison of the phi8 polymerase complex capsid with those of phi6 and other dsRNA viruses suggests that the quaternary structure in dsRNA bacteriophages differs from other dsRNA viruses. SH1 is unusual because there are two major types of capsomers building up the capsid, both of which seem to be composed mainly of single beta-barrels perpendicular to the capsid surface. This indicates that the beta-barrel may be ancestral to the double beta-barrel fold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human parvovirus B19 is a minute ssDNA virus causing a wide variety of diseases, including erythema infectiosum, arthropathy, anemias, and fetal death. After primary infection, genomic DNA of B19 has been shown to persist in solid tissues of not only symptomatic but also of constitutionally healthy, immunocompetent individuals. In this thesis, the viral DNA was shown to persist as an apparently intact molecule of full length, and without persistence-specific mutations. Thus, although the mere presence of B19 DNA in tissue can not be used as a diagnostic criterion, a possible role in the pathogenesis of diseases e.g. through mRNA or protein production can not be excluded. The molecular mechanism, the host-cell type and the possible clinical significance of B19 DNA tissue persistence are yet to be elucidated. In the beginning of this work, the B19 genomic sequence was considered highly conserved. However, new variants were found: V9 was detected in 1998 in France, in serum of a child with aplastic crisis. This variant differed from the prototypic B19 sequences by ~10 %. In 2002 we found, persisting in skin of constitutionally healthy humans, DNA of another novel B19 variant, LaLi. Genetically this variant differed from both the prototypic sequences and the variant V9 also by ~10%. Simultaneously, B19 isolates with DNA sequences similar to LaLi were introduced by two other groups, in the USA and France. Based on phylogeny, a classification scheme based on three genotypes (B19 types 1-3) was proposed. Although the B19 virus is mainly transmitted via the respiratory route, blood and plasma-derived products contaminated with high levels of B19 DNA have also been shown to be infectious. The European Pharmacopoeia stipulates that, in Europe, from the beginning of 2004, plasma pools for manufacture must contain less than 104 IU/ml of B19 DNA. Quantitative PCR screening is therefore a prerequisite for restriction of the B19 DNA load and obtaining of safe plasma products. Due to the DNA sequence variation among the three B19 genotypes, however, B19 PCR methods might fail to detect the new variants. We therefore examined the suitability of the two commercially available quantitative B19 PCR tests, LightCycler-Parvovirus B19 quantification kit (Roche Diagnostics) and RealArt Parvo B19 LC PCR (Artus), for detection, quantification and differentiation of the three B19 types known, including B19 types 2 and 3. The former method was highly sensitive for detection of the B19 prototype but was not suitable for detection of types 2 and 3. The latter method detected and differentiated all three B19 virus types. However, one of the two type-3 strains was detected at a lower sensitivity. Then, we assessed the prevalence of the three B19 virus types among Finnish blood donors, by screening pooled plasma samples derived from >140 000 blood-donor units: none of the pools contained detectable levels of B19 virus types 2 or 3. According to the results of other groups, B19 type 2 was absent also among Danish blood-donors, and extremely rare among symptomatic European patients. B19 type 3 has been encountered endemically in Ghana and (apparently) in Brazil, and sporadical cases have been detected in France and the UK. We next examined the biological characteristics of these virus types. The p6 promoter regions of virus types 1-3 were cloned in front of a reporter gene, the constructs were transfected into different cell lines, and the promoter activities were measured. As a result, we found that the activities of the three p6 promoters, although differing in sequence by >20%, were of equal strength, and most active in B19-permissive cells. Furthermore, the infectivity of the three B19 types was examined in two B19-permissive cell lines. RT-PCR revealed synthesis of spliced B19 mRNAs, and immunofluorescence verified the production of NS1 and VP proteins in the infected cells. These experiments suggested similar host-cell tropism and showed that the three virus types are strains of the same species, i.e. human parvovirus B19. Last but not least, the sera from subjects infected in the past either with B19 type 1 or type 2 (as evidenced by tissue persistence of the respective DNAs), revealed in VP1/2- and VP2-EIAs a 100 % cross-reactivity between virus types 1 and 2. These results, together with similar studies by others, indicate that the three B19 genotypes constitute a single serotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Safety, efficacy and enhanced transgene expression are the primary concerns while using any vector for gene therapy. One of the widely used vectors in clinical. trials is adenovirus which provides a safe way to deliver the therapeutic gene. However, adenovirus has poor transduction efficiency in vivo since most tumor cells express low coxsackie and adenovirus receptors. Similarly transgene expression remains low, possibly because of the chromatization of adenoviral genome upon infection in eukaryotic cells, an effect mediated by histone deacetylases (HDACs). Using a recombinant adenovirus (Ad-HSVtk) carrying the herpes simplex thymidine kinase (HSVtk) and GFP genes we demonstrate that HDAC inhibitor valproic acid can bring about an increase in CAR expression on host cells and thereby enhanced Ad-HSVtk infectivity. It also resulted in an increase in transgene (HSVtk and GFP) expression. This, in turn, resulted in increased cell kill of HNSCC cells, following ganciclovir treatment in vitro as well as in vivo in a xenograft nude mouse model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is a devastating disease with poor prognosis and no curative treatment, when widely metastatic. Conventional therapies, such as chemotherapy and radiotherapy, have efficacy but are not curative and systemic toxicity can be considerable. Almost all cancers are caused due to changes in the genetic material of the transformed cells. Cancer gene therapy has emerged as a new treatment option, and past decades brought new insights in developing new therapeutic drugs for curing cancer. Oncolytic viruses constitute a novel therapeutic approach given their capacity to replicate in and kill specifically tumor cells as well as reaching tumor distant metastasis. Adenoviral gene therapy has been suggested to cause liver toxicity. This study shows that new developed adenoviruses, in particular Ad5/19p-HIT, can be redirected towards kidney while adenovirus uptake by liver is minimal. Moreover, low liver transduction resulted in a favorable tumor to liver ratio of virus load. Further, we established a new immunocompetent animal model Syrian hamsters. Wild type adenovirus 5 was found to replicate in Hap-T1 hamster tumors and normal tissues. There are no antiviral drugs available to inhibit adenovirus replication. In our study, chlorpromazine and cidofovir efficiently abrogated virus replication in vitro and showed significant reduction in vivo in tumors and liver. Once safety concerns were addressed together with the new given antiviral treatment options, we further improved oncolytic adenoviruses for better tumor penetration, local amplification and host system modulation. Further, we created Ad5/3-9HIF-Δ24-VEGFR-1-Ig, oncolytic adenovirus for improved infectivity and antiangiogenic effect for treatment of renal cancer. This virus exhibited increased anti-tumor effect and specific replication in kidney cancer cells. The key player for good efficacy of oncolytic virotherapy is the host immune response. Thus, we engineered a triple targeted adenovirus Ad5/3-hTERT-E1A-hCD40L, which would lead to tumor elimination due to tumor-specific oncolysis and apoptosis together with an anti-tumor immune response prompted by the immunomodulatory molecule. In conclusion, the results presented in this thesis constitute advances in our understanding of oncolytic virotherapy by successful tumor targeting, antiviral treatment options as a safety switch in case of replication associated side-effects, and modulation of the host immune system towards tumor elimination.  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer is the most common cancer in males. Although many patients with localized disease can be cured with surgery and radiotherapy, advanced disease and especially castration resistant metastatic disease remains incurable, with a median life expectancy of less than 18 months. Oncolytic adenoviruses (Ads) are a new promising treatment against cancer due to their innate capacity to kill cancer cells. Viral replication in tumor cells leads to oncolysis and production of a multiplicity of new virions that are capable of further destroying cancerous tissue. Oncolytic Ads can be modified for tumor targeted infection and replication and be armed with therapeutic transgenes to maximize the oncolytic effect. Worldwide, clinical trials with oncolytic Ads have demonstrated good safety while the antitumor efficacy remains to be improved. Importantly, the best responses have been reported when oncolytic adenoviruses have been combined with standard cancer treatments, such as chemotherapy and radiation. Further, a challenge in many virotherapy approaches has been the monitoring of virus replication in vivo. Reporter genes have been extensively used as transgenes to evaluate the biodistribution of the virus and activity of specific promoters. However, these techniques are often limited to preclinical evaluation and not amenable to human use. The aim of the thesis was to find and develop new oncolytic Ads with maximum efficacy against metastatic, castration resistant prostate cancer and study them in vitro and in vivo combined to different forms of radiation therapy. Using combination therapy, we were aiming for better antitumor efficacy with reduced side effects. Capsid modified Ads for enhanced transduction were studied. Serotype 3 targeted chimera, Ad5/3, was found to have enhanced infectivity for prostate cancer and was used for developing new viruses for the study. Correlation between Ad-encoded marker peptide secretion and simultaneous viral replication was evaluated and the effects of radiotherapy on viral replication were studied in detail. We found that the repair of double strand breaks caused by ionizing radiation was inhibited by adenoviral proteins and led to autophagic cell death. Both subcutaneous models and intrapulmonary tumor models mimicking metastatic, aggressive disease were used in vivo. Virus efficacy was evaluated by intratumoral injections. Also, intravenous administration was evaluated to study the effectiveness in metastatic disease. Oncolytic adenovirus treatment led to significant tumor growth control and increased the survival rate of the mice. These results were further improved when oncolytic Ads were combined with radiation therapy. Oncolytic Ads expressing human sodium/iodide transporter (hNIS) as a transgene were evaluated for their oncolytic potency and for the functionality of hNIS in vitro and in vivo. Monitoring of viral replication was also assessed using different imaging modalities relative to clinical use. SPECT imaging of tumor-bearing mice was evaluated and combined with simultaneous CT-scanning to obtain important anatomical information on biodistribution, also in a three-dimensional form. It was shown that hNIS-expressing adenoviruses could harbour a bi-functional transgene allowing for localization and imaging of viral replication. Targeted radiotherapy was applied by systemic radioiodide administration and resulted in iodide accumulation into Ad-infected tumor. The combination treatment showed significantly enhanced antitumor efficacy in mice bearing prostate cancer tumors. In summary, the results presented above aim to provide new treatment modalities for castration resistant prostate cancer. Molecular insights were provided for better understanding of the benefits of combined radiation therapy and oncolytic adenoviruses, which will hopefully facilitate the translation of the approach into clinical use for humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hantaviruses (family Bunyaviridae, genus Hantavirus) are enveloped viruses incorporating a segmented, negative-sense RNA genome. Each hantavirus is carried by its specific host, either a rodent or an insectivore (shrew), in which the infection is asymptomatic and persistent. In humans, hantaviruses cause Hemorrhagic fever with renal syndrome (HFRS) in Eurasia and Hantavirus cardiopulmonary syndrome (HCPS) in the Americas. In Finland, Puumala virus (genus Hantavirus) is the causative agent of NE, a mild form of HFRS. The HFRS-type diseases are often associated with renal failure and proteinuria that might be mechanistically explained by infected kidney tubular cell degeneration in patients. Previously, it has been shown that non-pathogenic hantavirus, Tula virus (TULV), could cause programmed cell death, apoptosis, in cell cultures. This suggested that the infected kidney tubular degeneration could be caused directly by virus replication. In the first paper of this thesis the molecular mechanisms involved in TULV-induced apoptosis was further elucidated. A virus replication-dependent down-regulation of ERK1/2, concomitantly with the induced apoptosis, was identified. In addition, this phenomenon was not restricted to TULV or to non-pathogenic hantaviruses in general since also a pathogenic hantavirus, Seoul virus, could inhibit ERK1/2 activity. Hantaviruses consist of membrane-spanning glycoproteins Gn and Gc, RNA-dependent RNA polymerase (L protein) and nucleocapsid protein N, which encapsidates the viral genome, and thus forms the ribonucleoprotein (RNP). Interaction between the cytoplasmic tails of viral glycoproteins and RNP is assumed to be the only means how viral genetic material is incorporated into infectious virions. In the second paper of this thesis, it was shown by immunoprecipitation that viral glycoproteins and RNP interact in the purified virions. It was further shown that peptides derived from the cytoplasmic tails (CTs) of both Gn and Gc could bind RNP and recombinant N protein. In the fourth paper the cytoplamic tail of Gn but not Gc was shown to interact with genomic RNA. This interaction was probably rather unspecific since binding of Gn-CT with unrelated RNA and even single-stranded DNA were also observed. However, since the RNP consists of both N protein and N protein-encapsidated genomic RNA, it is possible that the viral genome plays a role in packaging of RNPs into virions. On the other hand, the nucleic acid-binding activity of Gn may have importance in the synthesis of viral RNA. Binding sites of Gn-CT with N protein or nucleic acids were also determined by peptide arrays, and they were largely found to overlap. The Gn-CT of hantaviruses contain a conserved zinc finger (ZF) domain with an unknown function. Some viruses need ZFs in entry or post-entry steps of the viral life cycle. Cysteine residues are required for the folding of ZFs by coordinating zinc-ions, and alkylation of these residues can affect virus infectivity. In the third paper, it was shown that purified hantavirions could be inactivated by treatment with cysteine-alkylating reagents, especially N-ethyl maleimide. However, the effect could not be pin-pointed to the ZF of Gn-CT since also other viral proteins reacted with maleimides, and it was, therefore, impossible to exclude the possibility that other cysteines besides those that were essential in the formation of ZF are required for hantavirus infectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human-mediated movement of plants and plant products is now generally accepted to be the primary mode of introduction of plant pathogens. Species of the genus Phytophthora are commonly spread in this way and have caused severe epidemics in silviculture, horticulture as well as natural systems all over the world. The aims of the study were to gather information on the occurrence of Phytophthora spp. in Finnish nurseries, to produce information for risk assessments for these Phytophthora spp. by determining their host ranges and tolerance of cold temperatures, and to establish molecular means for their detection. Phytophthora cactorum was found to persist in natural waterbodies and results suggest that irrigation water might be a source of inoculum in nurseries. In addition to P. cactorum, isolates from ornamental nursery Rhododendron yielded three species new to Finland: P. ramorum, P. plurivora and P. pini. The only species with quarantine status, P. ramorum, was most adapted to growth in cold temperatures and able to persist in the nursery in spite of an annual sanitation protocol. Phytophthora plurivora and the closely related P. pini had more hosts among Nordic tree and plant species than P. ramorum and P. cactorum, and also had higher infectivity rates. All four species survived two weeks in -5 °C , and thus soil survival of these Phytophthoras in Finland is likely under current climatic conditions. The most common tree species in Finnish nurseries, Picea abies, was highly susceptible to P. plurivora and P. pini in pathogenicity trials. In a histological examination of P. plurivora in P. abies shoot tissues, fast necrotrophic growth was observed in nearly all tissues. The production of propagules in P. abies shoot tissue was only weakly indicated. In this study, a PCR DGGE technique was developed for simultaneous detection and identification of Phytophthora spp. It reliably detected Phytophthora in plant tissues and could discriminate most test species as well as indicate instances of multiple-species infections. It proved to be a useful detection and identification tool either applied alone or in concert with traditional isolation culture techniques. All of the introduced species of Phytophthora had properties that promote a high risk of establishment and spread in Finland. It is probable that more pathogens of this genus will be introduced and become established in Finland and other Nordic countries unless efficient phytosanitary control becomes standard practice in the international plant trade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trichinella-suvun loiset ovat maailmanlaajuisesti levinneitä sukkulamatoja, jotka ovat infektiivisiä useille eläinlajeille ja tarttuvat myös ihmiseen. Loiset aiheuttavat ongelmia muun muassa lihateollisuudessa, haittaavat tuotantoeläinten terveyttä ja ovat elintarviketurvallisuusriski. Eri Trichinella-lajien infektiivisyys eri isäntäeläinlajeissa vaihtelee. Esimerkiksi Trichinella spiralis aiheuttaa rotassa voimakkaamman infektion kuin Trichinella nativa, mutta syytä loislajien erilaiseen infektiviteettiin samassa isäntäeläinlajissa ei tiedetä. Trichinella-loisten elämänkiertoon kuuluu sekä enteraali- eli suolistovaihe että parenteraalivaihe eli suoliston ulkopuolella tapahtuva vaihe. Vielä on epävarmaa, missä vaiheessa elämänkiertoa loislajien selviytyminen rotassa eroaa toisistaan. Tutkielmani kokeellisen osuuden tarkoituksena oli selvittää rotan ulosteita tutkimalla, kiinnittyykö toinen tutkituista Trichinella-lajeista (T. spiralis tai T. nativa) paremmin suolen seinämään ja tuleeko toinen nopeammin ulos suolesta. Mikäli rotan heikosti infektoivat T. nativa -loiset tulevat T. spiralis -loisia nopeammin ulosteen mukana ulos suolistosta, voidaan olettaa suolistovaiheen immuunipuolustuksen olevan ainakin osatekijä rotan kyvyssä puolustautua T. nativa –infektioita vastaan. Työ suoritettiin infektoimalla kuusi rottaa T. spiralis -loisella ja kuusi rottaa T. nativa -loisella. Lisäksi tutkimuksessa oli mukana kolme kontrollirottaa, joita ei infektoitu. Rottien ulosteet kerättiin seitsemän viikon ajalta, ja näytteet tutkittiin FLOTAC-menetelmällä. Ulosteista etsittiin Trichinella-loisten aikuis- ja toukkamuotoja. Ulostenäytteistä ei löytynyt yhtään loista. Kokeen jälkeen rotat lopetettiin ja niiden suolet tutkittiin, mutta suolistakaan ei löytynyt loisia. Lopetettujen eläinten lihasnäytteitä tutkimalla eläinten todettiin infektoituneen kyseessä olleelle loislajille tyypillisellä voimakkuudella. Kontrollirotista ei löydetty loisia. Koska rottien ulosteista tai suolista ei löytynyt loisia huolimatta onnistuneista infektoinneista, voidaan todeta käytetyn menetelmän olleen kokeeseen sopimaton. Mikäli loisia olisi löytynyt ulosteista, olisi ollut tarpeellista verrata eri lajeilla infektoitujen ryhmien tuloksia. Tieto siitä, tapahtuuko rotan suolistossa jotain, mikä heikentää toisen Trichinella-lajin infektiivisyyttä, olisi ollut merkittävä. Saadut tulokset olisivat olleet hyödyksi pohdittaessa parempia keinoja Trichinella-tartuntojen ennaltaehkäisyyn ja infektioiden hoitoon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monoclonal antibodies (mAbs) against secreted hemagglutinin (H) protein of rinderpest virus (RPV) expressed by a recombinant baculovirus were generated to characterize the antigenic sites on H protein and regions of functional significance. Three of the mAbs displayed hemagglutination inhibition activity and these mAbs were unable to neutralize virus infectivity. Western immunoblot analysis of overlapping deletion mutants indicated that three mAbs recognize antigenic regions at the extreme carboxy terminus (between amino acids 569 and 609) and the fourth mAb between amino acids 512 and 568. Using synthetic peptides, aa 569-577 and 575-583 were identified as the epitopes for E2G4 and D2F4, respectively. The epitopic domains of A12A9 and E2B6 mAbs were mapped to regions encompassing aa 527-554 and 588-609. Two epitopes spanning the extreme carboxy terminal region of aa 573 to 587 and 588 to 609 were shown to be immunodominant employing a competitive ELISA with polyclonal sera form vaccinated cattle. The D2F4 mAb which recognizes a unique epitope on RPV-H is not present on the closely related peste des petits ruminant virus FIN protein and this mAb could serve as a tool in the seromonitoring program after rinderpest vaccination. (C) 2002 Elsevier Science (USA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regular vaccinations with potent vaccine, in endemic countries and vaccination to live in non-endemic countries are the methods available to control foot-and-mouth disease. Selection of candidate vaccine strain is not only cumbersome but the candidate should grow well for high potency vaccine preparation. Alternative strategy is to generate an infectious cDNA of a cell culture-adapted virus and use the replicon for development of tailor-made vaccines. We produced a chimeric `O' virus in the backbone of Asia 1 and studied its characteristics. The chimeric virus showed high infectivity titre (>10(10)) in BHK 21 cell lines, revealed small plague morphology and there was no cross reactivity with antiserum against Asia I. The virus multiplies rapidly and reaches peak at 12 h post infection. The vaccine prepared with this virus elicited high antibody titres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an ``adaptive threshold,'' i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhi, the agent of typhoid fever in humans, expresses the surface Vi polysaccharide antigen that contributes to virulence. However, Vi expression can also be detrimental to some key steps of S. Typhi infectivity, for example, invasion, and Vi is the target of protective immune responses. We used a strain of S. Typhimurium carrying the whole Salmonella pathogenicity island 7 (SPI-7) to monitor in vivo Vi expression within phagocytic cells of mice at different times after systemic infection. We also tested whether it is possible to modulate Vi expression via the use of in vivo-inducible promoters and whether this would trigger anti-Vi antibodies through the use of Vi-expressing live bacteria. Our results show that Vi expression in the liver and spleen is downregulated with the progression of infection and that the Vi-negative population of bacteria becomes prevalent by day 4 postinfection. Furthermore, we showed that replacing the natural tviA promoter with the promoter of the SPI-2 gene ssaG resulted in sustained Vi expression in the tissues. Intravenous or oral infection of mice with a strain of S. Typhimurium expressing Vi under the control of the ssaG promoter triggered detectable levels of all IgG subclasses specific for Vi. Our work highlights that Vi is downregulated in vivo and provides proof of principle that it is possible to generate a live attenuated vaccine that induces Vi-specific antibodies after single oral administration.