980 resultados para IMMATURE DENDRITIC CELLS
Resumo:
The Apical Membrane Antigen-1 (AMA-1) is a well-characterized and functionally important merozoite protein and is currently considered a major candidate antigen for a malaria vaccine. Previously, we showed that AMA-1 has an influence on cellular immune responses of malaria-naive subjects, resulting in an alternative activation of monocyte-derived dendritic cells and induction of a pro-inflammatory response by stimulated PBMCs. Although there is evidence, from human and animal malaria model systems that cell-mediated immunity may contribute to both protection and pathogenesis, the knowledge on cellular immune responses in vivax malaria and the factors that may regulate this immunity are poorly understood. In the current work, we describe the maturation of monocyte-derived dendritic cells of P. vivax naturally infected individuals and the effect of P. vivax vaccine candidate Pv-AMA-1 on the immune responses of the same donors. We show that malaria-infected subjects present modulation of DC maturation, demonstrated by a significant decrease in expression of antigen-presenting molecules (CD1a, HLA-ABC and HLA-DR), accessory molecules (CD40, CD80 and CD86) and Fc gamma RI (CD64) receptor (P <= 0.05). Furthermore, Pv-AMA-1 elicits an upregulation of CD1a and HLA-DR molecules on the surface of monocyte-derived dendritic cells (P=0.0356 and P=0.0196, respectively), and it is presented by AMA-1-stimulated DCs. A significant pro-inflammatory response elicited by Pv-AMA-1-pulsed PBMCs is also demonstrated, as determined by significant production of TNF-alpha, IL-12p40 and IFN-gamma (P <= 0.05). Our results suggest that Pv-AMA-1 may partially revert DC down-modulation observed in infected subjects, and exert an important role in the initiation of pro-inflammatory immunity that might contribute substantially to protection. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Dendritic cells (DCs) have been described as initiators and modulators of the immune response. Recently we have shown a predominant production of interleukin-10 cytokine, low levels of interferon-gamma and inefficient T cell proliferation in patients with severe forms of chromoblastomycosis. Chromoblastomycosis starts with subcutaneous inoculation of Fonsecaea pedrosoi into tissue where DCs are the first line of defence against this microorganism. In the present study, the interaction of F. pedrosoi and DCs obtained from patients with chromoblastomycosis was investigated. Our results showed that DCs from patients exhibited an increased expression of human leucocyte antigen D-related (HLA-DR) and co-stimulatory molecules. In the presence of conidia, the expression of HLA-DR and CD86 was up-regulated by DCs from patients and controls. Finally, we demonstrate the reversal of antigen-specific anergy and a T helper type 1 response mediated by DCs incubated with F. pedrosoi conidea.
Resumo:
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease in which unknown arthrogenic autoantigen is presented to CD4+ T cells. The strong association of the disease with an epitope within the HLA-DR chain shared between various alleles of HLA-DR4 and DR1 emphasizes the importance of antigen presentation. This immune response predominantly occurs in the synovial tissue and fluid of the joints and autoreactive T cells are readily demonstrable in both the synovial compartment and blood. Circulating dendritic cells (DC) are phenotypically and functionally identical with normal peripheral blood (PB) DC. In the synovial tissue, fully differentiated perivascular DC are found in close association with T cells and with B cell follicles, sometimes containing follicular DC. These perivascular DC migrate across the activated endothelium from blood and receive differentiative signals within the joint from monocyte-derived cytokines and CD40-ligand+ T cells. In the SF, DC manifest an intermediate phenotype, similar to that of monocyte-derived DC in vitro. Like a delayed-type hypersensitivity response, the rheumatoid synovium represents an effector site. DC at many effector sites have a characteristic pattern of infiltration and differentiation. It is important to note that the effector response is not self-limiting in RA autoimmune inflammation. In this article, we argue that the presentation of self-antigen by DC and by autoantibody-producing B cells is critical for the perpetuation of the autoimmune response. Permanently arresting this ongoing immune response with either pharmaceutical agents or immunotherapy is a major challenge for immunology.
Resumo:
Dendritic cells (DC) are likely to play a significant role in immune-mediated diseases such as autoimmunity and allergy. To date there are few treatments capable of inducing permanent remission in rheumatoid arthritis (RA) and elucidation of the role of DC may provide specific strategies for disease intervention. Dendritic cells have proven to be powerful tools for immunotherapy and investigations are under way to determine their clinical efficacy in transplantation and viral and tumour immunotherapy. The present review will focus on the current view of DC and their role in autoimmunity, in particular RA. Two possible roles for DC in the pathogenesis of RA will be proposed, based on recent advances in the field.
Resumo:
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs), which play a vital role in primary immune responses. Introducing genes into DCs will allow constitutive expression of the encoded proteins and thus prolong the presentation of the antigens derived therefrom. In addition, multiple and unidentified epitopes encoded by the entire tumor-associated antigen (TAA) gene may enhance T cell activation. This study demonstrated that an HIV-1-based lentiviral vector conferred efficient gene transfer to DCs. The transgene, murine tyrosinase-related protein 2 (mTRP-2), encodes a clinically relevant melanoma-associated antigen (MAA), which has been found to be a tumor rejection antigen for B16 melanoma. The transfer and proper processing of mTRP-2 in DCs, in terms of RNA transcription activity and protein expression, were verified by RT-PCR and specific antibody, respectively. Administration of mTRP-2 gene-modified DCs (DC-HR'CmT2) to C57BL/6 mice evoked strong protection against tumor challenge, for which the presence of CD4(+) and CD8(+) cells during both the priming and challenge phase was essential. In a therapy model, our results showed that four of seven mice with preestablished tumor remained tumor free for 80 days after therapeutic vaccination. Given the results shown in this study, mTRP-2 gene transfer to DCs provides a potential therapeutic strategy for the management of melanoma, especially in the early stage of the disease.
Resumo:
Heavy chain ferritin (H-ferritin) Is a component of the Iron-binding protein, ferritin. We have previously shown that H-ferritin Inhibits anti-CD3-stimulated lymphocyte proliferation and that this was due to Increased production of Interleukin-10 (IL-10). In the present study we have shown that Induction of IL-10 production was due to effects of H-ferritin on adherent antigen-presenting cells (APCs) In blood and monocyte-derived dendritic cells (MoDCs). IL-10 was produced by a subpopulation of CD4 T cells, which expressed the CD25 component of the IL-2 receptor and the CTLA-4 receptor characteristic of regulatory T cells. The changes Induced In MoDCs were compared with those Induced by CD40L and their significance tested by Inhibition with monoclonal antibodies. These studies Indicated that H-ferritin Induced relatively greater expression of CD86 and B7-H1 on MoDCs and that monoclonal antibodies against their receptors, CTLA-4 and programmed death receptor-1 (PD-1), Inhibited IL-10 production from the regulatory T cells. H-ferritin did not appear to Induce direct production of the cytokines IL-2, IL-4, IL-6, IL-10, IL-12, or Interferon-gamma from the DCs. These results are consistent with the thesis that H-ferritin Induces B7-H1 and CD86 (B7-2) on APCs, which In turn Induce IL-10 production from regulatory T cells. This is possibly one mechanism by which melanoma cells may Induce changes In APCs In the vicinity of the tumor and result in suppression of Immune responses by induction of regulatory T cells. (C) 2002 by The American Society of Hematology.
Resumo:
Aberrant dendritic cell (DC) development and function may contribute to autoimmune disease susceptibility. To address this hypothesis at the level of myeloid lineage-derived DC we compared the development of DC from bone marrow progenitors in vitro and DC populations in vivo in autoimmune diabetes-prone nonbese diabetic (NOD) mice, recombinant congenic nonbese diabetes-resistant (NOR) mice, and unrelated BALB/c and C57BL/6 (BL/6) mice. In GM-CSF/IL-4-supplemented bone marrow cultures, DC developed in significantly greater numbers from NOD than from NOR, BALB/c, and BL/6 mice. Likewise, DC developed in greater numbers from sorted (lineage(-)IL-7Ralpha(-)SCA-1(-)c-kit(+)) NOD myeloid progenitors in either GM-CSF/IL-4 or GM-CSF/stem cell factor (SCF)/TNF-alpha. [H-3]TdR incorporation indicated that the increased generation of NOD DC was due to higher levels of myeloid progenitor proliferation. Generation of DC with the early-acting hematopoietic growth factor, flt3 ligand, revealed that while the increased DC-generative capacity of myeloid-committed progenitors was restricted to NOD cells, early lineage-uncommitted progenitors from both NOD and NOR had increased DC-gencrative capacity relative to BALB/c and BL/6. Consistent with these findings, NOD and NOR mice had increased numbers of DC in blood and thymus and NOD had an increased proportion of the putative myeloid DC (CD11c(+)CD11b(+)) subset within spleen. These findings demonstrate that diabetes-prone NOD mice exhibit a myeloid lineage-specific increase in DC generative capacity relative to diabetes-resistant recombinant congenic NOR mice. We propose that an imbalance favoring development of DC from myeloid-committed progenitors predisposes to autoimmune disease in NOD mice.
Resumo:
Dendritic cells (DC) are rare, bone marrow-derived antigen-presenting cells that play a critical role in the induction and regulation of immune reactivity. In this article, we review the identification and characterization of liver DC, their ontogenic development, in vivo mobilization and population dynamics. In addition, we discuss the functions of DC isolated from liver tissue or celiac lymph, or propagated in vitro from liver-resident haemopoietic stem/progenitor cells. Evidence concerning the role of DC in viral hepatitis. liver tumours, autoimmune liver diseases, granulomatous inflammation and the outcome of liver transplantation is also discussed.
Resumo:
Purpose Antigen-specific suppression of a previously primed immune response is a major challenge for immunotherapy of autoimmune disease. We have shown that NF-κB inactivation in dendritic cells (modified DC) converts them into cells that tolerize rather than immunize to specific antigen [1]. Antigen-exposed modified DC prevent priming of immunity, and they suppress previously primed immune responses. Regulatory CD4+ T cells, which can transfer antigen-specific tolerance in an IL-10-dependent fashion, mediate the tolerance. We hypothesized that modified DC exposed to arthritogenic antigen would suppress clinical arthritis after disease onset. Methods Antigen-induced arthritis was induced in C57/Bl6 mice by priming to methylated bovine serum albumin (mBSA) antigen followed by challenge injection of mBSA to one knee. Knee swelling was apparent within 2 days, with peak clinical signs apparent at 5 days. Mice were treated with antigen-exposed modified DC between 2 and 6 days after mBSA challenge to the knee joint. Results Clinical arthritis was suppressed in each group receiving mBSA-exposed modified DC within 4 days compared with mice that received either no DC or keyhole limpet hemocyanin-exposed modified DC. Clinical improvement was associated with mBSA-specific tolerance in mice receiving mBSA-exposed modified DC. Tolerance induction was not impaired by concomitant administration of anti-tumor necrosis factor alpha monoclonal antibody. Subsequent rechallenge with intra-articular IL-1 induced flare of arthritis in all groups, which could be effectively suppressed by a second administration of mBSA-exposed modified DC. Conclusions The data indicate that modified DC induce antigen-specific immune suppression in this model of inflammatory arthritis, even after full clinical expression of the disease. These observations have important implications for antigen-specific therapy of autoimmunity.
Resumo:
Objective: The purpose of this study was to evaluate the inflammatory cell subset proportions in the upper gingival connective tissue, including mature dendritic cells (DC) in elderly and younger patients with generalized chronic periodontitis in order to further understand the effect of aging on gingival inflammatory phenomenon. Methods: Gingival tissue specimens presenting chronic periodontitis from 8 elderly patients aged >75 (test group, group T) and from 8 younger patients aged 50-60 (considered as controls, group C) were analysed by immunohistochemistry using monoclonal antibodies against CD45RB, CD4, CD8, CD19, CD68, DC-SIGN, DC-LAMP molecules. The number of each immunolabelled cells subset was counted using image analysis. Results: The difference in the number of CD45RB + leucocytes in the upper gingival connective tissue between groups was not significant permitting to use it as reference. As compared. to group C, the lymphocyte subsets/CD45RB + leucocytes ratios tended to decrease in group T but the decrease was significant only for CD4 + T lymphocytes/ CD45RB + cells ratio (p < 0.03). On the opposite, the ratios of antigen-presenting cells DC-SIGN + cells/CD45RB + cells and DC-LAMP + cells/CD45RB + cells were significantly increased;(p < 0.03 and <0.0001, respectively) in group T. Moreover, in group T the DC-LAMP + cells/DC-SIGN + cells ratio was significantly increased (p < 0.05) showing an increased number of matured dendritic cells. Conclusion: During chronic periodontitis in elderly patients, our results show a decrease in the ratio of gingival CD4 + lymphocyte subset associated with an increase in the ratios of antigen-presenting cells subsets and more particularly maturated DC-LAMP + dendritic cells. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Among the population of antigen presenting cells, dendritic cells (DCs) are considered the sentinels of the immune system. Besides activating naı¨ ve T cells, DC can directly activate naı¨ ve and memory B cells and are also able to regulate effectors of innate immunity such as NK cells and NKT cells. Increasing evidence indicates that DCs are not only decisive for T cell priming, but are also key players to maintain self-tolerance in vivo. Previous results in our lab have shown that DCs treated with a pharmacological NFkB inhibitor (BAY11–7082) confer suppression to a previously immune response. This suppression was IL-10 dependent and results from the induction of Ag specific CD4+ regulatory T cells. To elucidate the mechanism of suppression induced by administration of Bay treated DC, we used a model of infectious tolerance transfer from DC treated mice to primed recipient mice. Our results show that both CD4 + splenic cells and non T cells from animals injected with Bay treated DC, but not from untreated DC, were capable of transferring the suppression. Moreover, sorted B cells and NK cells could transfer antigenspecific infectious tolerance after administration of Bay treated DC. In addition, this suppressive effect could not be seen either in mice depleted of NK cells nor in NKT deficient mice. These observations highlight the role of several immune cells in the maintenance of tolerance, and impact on the design of immunotherapeutic suppression of autoimmune diseases in which NKT cells are deficient or defective, such as diabetes and lupus.
Resumo:
The critical interaction initiating and perhaps perpetuating rheumatoid arthritis (RA) is the presentation of arthritogenic antigen to autoreactive T cells. In contrast to many organ-specific autoimmune diseases, no candidate autoantigens have yet been confirmed for RA. Here, Ranjeny Thomas and Peter Lipsky examine the role of dendritic cells in autoimmune disease, leading to the hypothesis that activation of T cells by endogenous self-peptides may be sufficient to initiate RA.