970 resultados para ICE SCATTERING
Resumo:
Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting sea-ice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer. This data set is used to produce an Arctic-wide map of light distribution under summer sea ice. Our results show that transmittance through first-year ice (FYI, 0.11) was almost three times larger than through multi-year ice (MYI, 0.04), and that this is mostly caused by the larger melt-pond coverage of FYI (42 vs. 23%). Also energy absorption was 50% larger in FYI than in MYI. Thus, a continuation of the observed sea-ice changes will increase the amount of light penetrating into the Arctic Ocean, enhancing sea-ice melt and affecting sea-ice and upper-ocean ecosystems.
Resumo:
In this thesis the low-temperature magnetism of the spin-ice systems Dy2Ti2O7 and Ho2Ti2O7 is investigated. In general, a clear experimental evidence for a sizable magnetic contribution kappa_{mag} to the low-temperature, zero-field heat transport of both spin-ice materials is observed. This kappa_{mag} can be attributed to the magnetic monopole excitations, which are highly mobile in zero field and are suppressed by a rather small external field resulting in a drop of kappa(H). Towards higher magnetic fields, significant field dependencies of the phononic heat conductivities kappa_{ph}(H) of Ho2Ti2O7 and Dy2Ti2O7 are found, which are, however, of opposite signs, as it is also found for the highly dilute reference materials (Ho0.5Y0.5)2Ti2O7 and (Dy0.5Y0.5)2Ti2O7. The dominant effect in the Ho-based materials is the scattering of phonons by spin flips which appears to be significantly stronger than in the Dy-based materials. Here, the thermal conductivity is suppressed due to enhanced lattice distortions observed in the magnetostriction. Furthermore, the thermal conductivity of Dy2Ti2O7 has been investigated concerning strong hysteresis effects and slow-relaxation processes towards equilibrium states in the low-temperature and low-field regime. The thermal conductivity in the hysteretic regions slowly relaxes towards larger values suggesting that there is an additional suppression of the heat transport by disorder in the non-equilibrium states. The equilibration can even be governed by the heat current for particular configurations. A special focus was put on the dilution series Dy2Ti2O7x. From specific heat measurements, it was found that the ultra-slow thermal equilibration in pure spin ice Dy2Ti2O7 is rapidly suppressed upon dilution with non-magnetic yttrium and vanishes completely for x>=0.2 down to the lowest accessible temperatures. In general, the low-temperature entropy of (Dy1-xYx)2Ti2O7, considerably decreases with increasing x, whereas its temperature-dependence drastically increases. Thus, it could be clarified that there is no experimental evidence for a finite zero-temperature entropy in (Dy1-xYx)2Ti2O7 above x>=0.2, in clear contrast to the finite residual entropy S_{P}(x) expected from a generalized Pauling approximation. A similar discrepancy is also present between S_{P}(x) and the low-temperature entropy obtained by Monte Carlo simulations, which reproduce the experimental data from 25 K down to 0.7 K, whereas the data at 0.4 K are overestimated. A straightforward description of the field-dependence kappa(H) of the dilution series with qualitative models justifies the extraction of kappa_{mag}. It was observed that kappa_{mag} systematically scales with the degree of dilution and its low-field decrease is related to the monopole excitation energy. The diffusion coefficient D_{mag} for the monopole excitations was calculated by means of c_{mag} and kappa_{mag}. It exhibits a broad maximum around 1.6 K and is suppressed for T<=0.5 K, indicating a non-degenerate ground state in the long-time limit, and in the high-temperature range for T>=4 K where spin-ice physics is eliminated. A mean-free path of 0.3 mum is obtained for Dy2Ti2O7 at about 1 K within the kinetic gas theory.
Resumo:
In-situ observations on the size and shape of particles in arctic cirrus are less common than those in mid-latitude and tropical cirrus with considerable uncertainty about the contributions of small ice crystals (maximum dimension D<50 µm) to the mass and radiative properties that impact radiative forcing. In situ measurements of small ice crystals in arctic cirrus were made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 during transits of the National Research Council of Canada Convair-580 between Fairbanks and Barrow, Alaska and during Mixed Phase Arctic Cloud Experiment (MPACE) in October 2004 with the University of North Dakota (UND) Citation over Barrow, Alaska. Concentrations of small ice crystals with D < 50 μm from a Cloud and Aerosol Spectrometer (CAS), a Cloud Droplet Probe (CDP), a Forward Scattering Spectrometer Probe (FSSP), and a two-dimensional stereo probe (2DS) were compared as functions of the concentrations of crystals with D > 100 μm measured by a Cloud Imaging Probe (CIP) and two-dimensional stereo probe (2DS) in order to assess whether the shattering of large ice crystals on protruding components of different probes artificially amplified measurements of small ice crystal concentrations. The dependence of the probe comparison on other variables as CIP N>100 (number concentrations greater than diameter D>100 μm),temperature, relative humidity respect to ice (RHice), dominant habit from the Cloud Particle Imager (CPI), aircraft roll, pitch, true air speed and angle of attack was examined to understand potential causes of discrepancies between probe concentrations. Data collected by these probes were also compared against the data collected by a CAS, CDP and CIP during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) and by a CAS and 2DS during the Tropical Composition, Cloud and Climate Coupling (TC4) missions. During ISDAC, the CAS and FSSP both overestimated measurements of small ice crystals compared to both the CDP and 2DS by 1-2 orders of magnitude. Further, the amount of overestimation increased with the concentrations from the CIP2 (N>100 > 0.1 L-1). There was an unexplained discrepancy in concentrations of small crystals between the CDP and 2DS during ISDAC. In addition, there was a strong dependence on RHice of the average ratios of the N3-50, CAS/N3-50,CDP, N3-50, FSSP096/N3-50,CDP, N3-50, CAS/N3-50,FSSP096, N10-50, CDP/N3-50,2DS, N10-50, FSSP096/N10-50,2DS. Continued studies are needed to understand the discrepancy of these probes.
Resumo:
Interactions between surface waves and sea ice are thought to be an important, but poorly understood, physical process in the atmosphere-ice-ocean system. In this work, airborne scanning lidar was used to observe ocean waves propagating into the marginal ice zone (MIZ). These represent the first direct spatial measurements of the surface wave field in the polar MIZ. Data were compared against two attenuation models, one based on viscous dissipation and one based on scattering. Both models were capable of reproducing the measured wave energy. The observed wavenumber dependence of attenuation was found to be consistent with viscous processes, while the spectral spreading of higher wavenumbers suggested a scattering mechanism. Both models reproduced a change in peak direction due to preferential directional filtering. Floe sizes were recorded using co-located visible imagery, and their distribution was found to be consistent with ice breakup by the wave field.
Resumo:
The poorly understood attenuation of surface waves in sea ice is generally attributed to the combination of scattering and dissipation. Scattering and dissipation have very different effects on the directional and temporal distribution of wave energy, making it possible to better understand their relative importance by analysis of swell directional spreading and arrival times. Here we compare results of a spectral wave model – using adjustable scattering and dissipation attenuation formulations – with wave measurements far inside the ice pack. In this case, scattering plays a negligible role in the attenuation of long swells. Specifically, scattering-dominated attenuation would produce directional wave spectra much broader than the ones recorded, and swell events arriving later and lasting much longer than observed. Details of the dissipation process remain uncertain. Average dissipation rates are consistent with creep effects but are 12 times those expected for a laminar boundary layer under a smooth solid ice plate.
Resumo:
During the Snowball Earth events of the Neoproterozoic, tropical regions of the ocean could have developed a precipitated salt lag deposit left behind by sublimating sea ice. The major salt would have been hydrohalite, NaCl•2H2O. The crystals in such a deposit can be small and highly scattering, resulting in an allwave albedo similar to that of snow. The snow-free sea ice from which such a crust could develop has a lower albedo, around 0.5, so the development of a crust would substantially increase the albedo of tropical regions on Snowball Earth. Hydrohalite crystals are much less absorptive than ice in the near- infrared part of the solar spectrum, so their presence at the surface would increase the overall albedo as well as altering its spectral distribution. In this paper, we use laboratory measurements of the spectral albedo of a hydrohalite lag deposit, in combination with a radiative transfer model, to infer the inherent optical properties of hydrohalite as functions of wavelength. Using this result, we model mixtures of hydrohalite and ice representing both artificially created surfaces in the laboratory and surfaces relevant to Snowball Earth. The model is tested against sequences of laboratory measurements taken during the formation and the dissolution of a lag deposit of hydrohalite. We present a parameterization for the broadband albedo of cold, sublimating sea ice as it forms and evolves a hydrohalite crust, for use in climate models of Snowball Earth.
Resumo:
Current data indicate that the size of high-density lipoprotein (HDL) may be considered an important marker for cardiovascular disease risk. We established reference values of mean HDL size and volume in an asymptomatic representative Brazilian population sample (n=590) and their associations with metabolic parameters by gender. Size and volume were determined in HDL isolated from plasma by polyethyleneglycol precipitation of apoB-containing lipoproteins and measured using the dynamic light scattering (DLS) technique. Although the gender and age distributions agreed with other studies, the mean HDL size reference value was slightly lower than in some other populations. Both HDL size and volume were influenced by gender and varied according to age. HDL size was associated with age and HDL-C (total population); non- white ethnicity and CETP inversely (females); HDL-C and PLTP mass (males). On the other hand, HDL volume was determined only by HDL-C (total population and in both genders) and by PLTP mass (males). The reference values for mean HDL size and volume using the DLS technique were established in an asymptomatic and representative Brazilian population sample, as well as their related metabolic factors. HDL-C was a major determinant of HDL size and volume, which were differently modulated in females and in males.
Resumo:
We analytically calculate the time-averaged electromagnetic energy stored inside a nondispersive magnetic isotropic cylinder that is obliquely irradiated by an electromagnetic plane wave. An expression for the optical-absorption efficiency in terms of the magnetic internal coefficients is also obtained. In the low absorption limit, we derive a relation between the normalized internal energy and the optical-absorption efficiency that is not affected by the magnetism and the incidence angle. This relation, indeed, seems to be independent of the shape of the scatterer. This universal aspect of the internal energy is connected to the transport velocity and consequently to the diffusion coefficient in the multiple scattering regime. Magnetism favors high internal energy for low size parameter cylinders, which leads to a low diffusion coefficient for electromagnetic propagation in 2D random media. (C) 2010 Optical Society of America
Resumo:
Small angle X-ray scattering (SAXS) images of normal breast tissue and benign and malignant breast tumour tissues, fixed in formalin, were measured at the momentum transfer range of 0.063 nm(-1) <= q (=4 pi sin(theta/2)/lambda) <= 2.720 nm(-1). Four intrinsic parameters were extracted from the scattering profiles (1D SAXS image reduced) and, from the combination of these parameters, another three parameters were also created. All parameters, intrinsic and derived, were subject to discriminant analysis, and it was verified that parameters such as the area of diffuse scatter at the momentum transfer range 0.50 <= q <= 0.56 nm(-1), the ratio between areas of fifth-order axial and third-order lateral peaks and third-order axial spacing provide the most significant information for diagnosis (p < 0.001). Thus, in this work it was verified that by combining these three parameters it was possible to classify human breast tissues as normal, benign lesion or malignant lesion with a sensitivity of 83% and a specificity of 100%.
Resumo:
We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches-a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493241]
Resumo:
We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfven wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfven wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494379]
Resumo:
Heavy quark production has been very well studied over the last years both theoretically and experimentally. Theory has been used to study heavy quark production in ep collisions at HERA, in pp collisions at Tevatron and RHIC, in pA and dA collisions at RHIC, and in AA collisions at CERN-SPS and RHIC. However, to the best of our knowledge, heavy quark production in eA has received almost no attention. With the possible construction of a high energy electron-ion collider, updated estimates of heavy quark production are needed. We address the subject from the perspective of saturation physics and compute the heavy quark production cross section with the dipole model. We isolate shadowing and nonlinear effects, showing their impact on the charm structure function and on the transverse momentum spectrum.
Resumo:
We report a comprehensive study of weak-localization and electron-electron interaction effects in a GaAs/InGaAs two-dimensional electron system with nearby InAs quantum dots, using measurements of the electrical conductivity with and without magnetic field. Although both the effects introduce temperature dependent corrections to the zero magnetic field conductivity at low temperatures, the magnetic field dependence of conductivity is dominated by the weak-localization correction. We observed that the electron dephasing scattering rate tau(-1)(phi), obtained from the magnetoconductivity data, is enhanced by introducing quantum dots in the structure, as expected, and obeys a linear dependence on the temperature and elastic mean free path, which is against the Fermi-liquid model. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2996034]
Resumo:
The combined effects of concentration and pH on the conformational states of bovine serum albumin (BSA) are investigated by small-angle x-ray scattering. Serum albumins, at physiological conditions, are found at concentrations of similar to 35-45 mg/mL (42 mg/mL in the case of humans). In this work, BSA at three different concentrations (10, 25, and 50 mg/mL) and pH values (2.0-9.0) have been studied. Data were analyzed by means of the Global Fitting procedure, with the protein form factor calculated from human serum albumin (HSA) crystallographic structure and the interference function described, considering repulsive and attractive interaction potentials within a random phase approximation. Small-angle x-ray scattering data show that BSA maintains its native state from pH 4.0 up to 9.0 at all investigated concentrations. A pH-dependence of the absolute net protein charge is shown and the charge number per BSA is quantified to 10(2), 8(l), 13(2), 20(2), and 26(2) for pH values 4.0, 5.4, 7.0, 8.0, and 9.0, respectively. The attractive potential diminishes as BSA concentration increases. The coexistence of monomers and dimers is observed at 50 mg/mL and pH 5.4, near the BSA isoelectric point. Samples at pH 2.0 show a different behavior, because BSA overall shape changes as a function of concentration. At 10 mg/mL, BSA is partially unfolded and a strong repulsive protein-protein interaction occurs due to the high amount of exposed charge. At 25 and 50 mg/mL, BSA undergoes some refolding, which likely results in a molten-globule state. This work concludes by confirming that the protein concentration plays an important role on the pH-unfolded BSA state, due to a delicate compromise between interaction forces and crowding effects.
Resumo:
The semiclassical limit of quantum mechanical scattering in two dimensions is developed and the Wentzel-Kramers-Brillouin and eikonal results for two-dimensional scattering is derived. No backward or forward glory scattering is present in two dimensions. Other phenomena, such as rainbows and orbiting, do occur. (C) 2008 American Association of Physics Teachers.