1000 resultados para IAS 14
Resumo:
The study evaluated, in early post-partum anoestrous Nelore cows, if the increase in plasma oestradiol (E2) concentrations in the pre-ovulatory period and/or progesterone priming (P4 priming) preceding ovulation, induced by hormonal treatment, reduces the endogenous release of prostaglandin PGF(2)alpha and prevents premature lysis of the corpus luteum (CL). Nelore cows were subjected to temporary calf removal for 48 h and divided into two groups: GPE/eCG group (n = 10) and GPG/eCG group (n = 10). Animals of the GPE/eCG group were treated with a GnRH agonist. Seven days later, they received 400 ID of eCG, immediately after PGF(2)alpha treatment, and on day 0, 1.0 mg of oestradiol benzoate (EB). Cows of the GPG/eCG group were similarly treated as those of the GPE/eCG group, except that EB was replaced with a second dose of GnRH. All animals were challenged with oxytocin (OT) 9, 12, 15 and 18 days after EB or GnRH administration and blood samples were collected before and 30 min after OT. Irrespective of the treatments, a decline in P4 concentration on day 18 was observed for cows without P4 priming. However, animals exposed to P4 priming, treated with EB maintained high P4 concentrations (8.8 +/- 1.2 ng/ml), whereas there was a decline in P4 on day 18 (2.1 +/- 1.0 ng/ml) for cows that received GnRH to induce ovulation (p < 0.01). Production of 13,14-dihydro-15-keto prostaglandin F(2)alpha (PGFM) in response to OT increased between days 9 and 18 (p < 0.01), and this increase tended to be more evident in animals not exposed to P4 priming (p < 0.06). In conclusion, the increase in E2 during the pre-ovulatory period was not effective in inhibiting PGFM release, which was lower in P4-primed than in non-primed animals. Treatment with EB promoted the maintenance of elevated P4 concentrations 18 days after ovulation in P4-primed animals, indicating a possible beneficial effect of hormone protocols containing EB in animals with P4 priming.
Resumo:
In the G2 phase cell cycle checkpoint arrest, the cdc25-dependent activation of cyclin B/cdc2, a critical step in regulating entry into mitosis, is blocked. Studies in yeast have demonstrated that the inhibition of cdc25 function involves 14-3-3 binding to cdc25, In humans, two cdc25 isoforms have roles in G2/M progression, cdc25B and cdc25C, both bind 14-3-3, Abrogating 14-3-3 binding to cdc25C attenuates the G2 checkpoint arrest, but the contribution of 14-3-3 binding to the regulation of cdc25B function is unknown. Here we demonstrate that high level over-expression of cdc25B in G2 checkpoint arrested cells can activate cyclin B/cdc2 and overcome the checkpoint arrest. Mutation of the major 14-3-3 binding site, S323, or removal of the N-terminal regulatory domain are strong activating mutations, increasing the efficiency with which the mutant forms of cdc25B not only overcome the arrest, but also initiate aberrant mitosis, We also demonstrate that 14-3-3 binding to the S323 site on cdc25B blocks access of the substrate cyclin/cdks to the catalytic site of the enzyme, thereby directly inhibiting the activity of cdc25B, This provides direct mechanistic evidence that 14-3-3 binding to cdc25B can regulate its activity, thereby controlling progression into mitosis.
Resumo:
Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions, We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation, General serine-threonine phosphatase inhibitors such sodium fluoride, or beta-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I-1 or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains, These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.
Resumo:
Radiolabelled C-14 cylindrospermopsin (CYN) has been prepared and used to investigate the distribution and excretion of CYN in vivo in male Quackenbush mice. At a dose of 0.2 mg/kg (i.e., approx. median lethal dose) the following mean (SID) urinary and faecal recoveries (cumulative) were obtained, respectively: (0-6 hours, n = 4) 48.2 (29.3)%, 11.9 (21.4)%; (0-12 hours, n = 12) 66.0 (27.1)%, 5.7 (5.6)%; (0-24 hours, n = 12) 68.4 (26.7)%, 8.5 (8.1)%. Mean (SD) recoveries from livers at 6 hours were 20.6 (6.4)% (n = 4), at 48 hours 13.1 (7.7)% (n = 8), and 5-7 days were 2.1 (2.1)% (n = 8). A substantial amount (up to 23%) can be retained in the liver for up to 48 hours with a lesser amount retained in the kidneys. The excretion patterns show substantial interindividual variability between predominantly faecal or urinary excretion, but these patterns are not related in any simple manner to the outcome in terms of toxicity. There is at least one methanol-extractable metabolite as well as a nonmethanol-extractable metabolite in the liver. The methanol-extractable metabolite was not found in the kidney and is more hydrophilic than CYN itself on reverse phase. (C) 2001 by John Wiley & Sons, Inc.
Resumo:
The E7 oncoprotein of human papillomavirus 16 (HPV16) transforms basal and suprabasal cervical epithelial cells and is a tumor-specific antigen in cervical carcinoma, to which immunotherapeutic strategies aimed at cytotoxic T-lymphocyte (CTL) induction are currently directed. By quantifying major histocompatibility complex class I tetramer-binding T cells and CTL in mice expressing an HPV16 E7 transgene from the keratin-l l (K14) promoter in basal and suprabasal keratinocytes and in thymic cortical epithelium, we show that antigen responsiveness of both E7- and non-E7-specific CD8(+) cells is down-regulation compared to non-E7 transgenic control mice. We show that the effect is specific for E7, and not another transgene, expressed from the K14 promoter, Down-regulation did not involve deletion of CD8(+) T cells of high affinity or high avidity, and T-cell receptor (TCR) VP-chain usage and TCR receptor density were similar in antigen-responsive cells from E7 transgenic and non-E7 transgenic mice. These data indicate that E7 expressed chronically from the K14 promoter nonspecifically down-regulates CD8+ T-cell responses. The in vitro data correlated with the failure of immunized E7 transgenic mice to control the growth of an E7-expressing tumor challenge, We have previously shown that E7-directed CTL down-regulation correlates with E7 expression in peripheral but not thymic epithelium (T, Dean et al., J, Virol. 73:6166-6170, 1999), The findings have implications for the immunological consequences of E7-expressing tumor development and E7-directed immunization strategies. Generically, the findings illustrate a T-cell immunomodulatory function for a virally encoded human oncoprotein.
Resumo:
The class of molecular chaperones known as 14-3-3 is involved in the control of cellular growth by virtue of its apparent regulation of various signaling pathways, including the Raf/mitogen-activated protein kinase pathway. In breast cancer cells, the sigma form of 14-3-3 has been shown to interact with cyclin-dependent kinases and to control the rate of entry into mitosis. To test for a direct role for 14-3-3 in breast epithelial cell neoplasia, me have quantitated 14-3-3 protein levels using a proteomic approach based on two-dimensional electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF). We show here that 14-3-3 sigma protein is strongly down-regulated in the prototypic breast cancer cell lines MCF-7 and MDA-MB-231 and in primary breast carcinomas as compared with normal breast epithelial cells. In contrast, levels of the alpha, beta, delta, or zeta isoforms of 14-3-3 mere the same in both normal and transformed cells. The data support the idea that 14-3-3 sigma is involved in the neoplastic transition of breast epithelial cells by virtue of its role as a tumor suppressor; as such, it may constitute a robust marker with clinical efficacy for this pathology.
Resumo:
We have identified a novel, highly conserved protein of 14 kD copurifying with late endosomes/lysosomes on density gradients. The protein, now termed p14, is peripherally associated with the cytoplasmic face of late endosomes/lysosomes in a variety of different cell types. In a two-hybrid screen with p14 as a bait, we identified the mitogen-activated protein kinase (MAPK) scaffolding protein MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) partner 1 (MP1) as an interacting protein. We confirmed the specificity of this interaction in vitro by glutathione S-transferase pull-down assays and by coimmunoprecipitation, cosedimentation on glycerol gradients, and colocalization. Moreover, expression of a plasma membrane-targeted p14 causes mislocalization of coexpressed MP1. In addition, we could reconstitute protein complexes containing the p14-MP1 complex associated with ERK and MEK in vitro. The interaction between p14 and MP1 suggests a MAPK scaffolding activity localized to the cytoplasmic surface of late endosomes/lysosomes, thereby combining catalytic scaffolding and subcellular compartmentalization as means to modulate MAPK signaling within a cell.
Resumo:
Areas of the limbic system of adult male Wistar rats were screened for kainic-acid-induced gene expression. Polymerase-chain-reactionbased differential display identified a 147-bp cDNA fragment, which represented an mRNA that was upregulated in the entorhinal cortex and hippocampus in the kainic-acid-treated animals. The sequence was 97.8% homologous to rat 14-3-3 zeta isoform mRNA. Detailed Northern analysis revealed increased mRNA levels in the entorhinal cortex I h after kainic acid exposure and continued elevation 24 h post-injection in both the entorhinal cortex and hippocampus. Western blot analyses confirmed that the protein product of this gene was also present in increased amounts over the same time period. Immunohistochemistry and terminal transferase-mediated dUTP nick end labelling (TUNEL) detected expression of 14-3-3 protein exclusively in the entorhinal cortex and hippocampus, and only in TUNEL-positive neuronal cells. Expression of the tumor suppressor protein, p53 was also induced by kainate injection, and was co-localized with 14-3-3 zeta protein in selected cells only in the affected brain regions. The increase gene expression of 14-3-3 represents a transcription-mediated response associated with region selective neuronal damage induced by kainic acid. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
CcmG is unlike other periplasmic thioredoxin (TRX)like proteins in that it has a specific reducing activity in an oxidizing environment and a high fidelity of interaction. These two unusual properties are required for its role in c-type cytochrome maturation. The crystal structure of CcmG reveals a modified TRX fold with an unusually acidic active site and a groove formed from two inserts in the fold. Deletion of one of the groove-forming inserts disrupts c-type cytochrome formation. Two unique structural features of CcmG-an acidic active site and an adjacent groove-appear to be necessary to convert an indiscriminately binding scaffold, the TRX fold, into a highly specific redox protein.
Resumo:
Ecosystem management such as plant residue retention and prescribed burning can significantly affect soil organic matter (SOM) composition and, thereby, the closely associated carbon (C) and nitrogen (N) cycling processes, which underpin terrestrial ecosystem productivity and sustainability. Humic acid (HA) is an important SOM component and its chemical composition has attracted much attention. Here we report the first application of N-14 nuclear magnetic resonance (NMR) spectroscopy to soil HA study, revealing the surprising existence of nitrate-N and ammonia-N in the HAs. This newly discovered HA nitrate-N, though in a relatively low concentrations, is closely related to soil N availability and responsive to plant residue management regimes in contrasting forest ecosystems. The HA nitrate-N may be a useful and sensitive biochemical indicator of SOM quality in response to different ecosystem management regimes.
Resumo:
One of the major regulators of mitosis in somatic cells is cdc25B. cdc25B is tightly regulated at multiple levels. The final activation step involves the regulated binding of 14-3-3 proteins. Previous studies have demonstrated that Ser-323 is a primary 14-3-3 binding site in cdc25B, which influences its activity and cellular localization. 14-3-3 binding to this site appeared to interact with the N-terminal domain of cdc25B to regulate its activity. The presence of consensus 14-3-3 binding sites in the N-terminal domain suggested that the interaction is through direct binding of the 14-3-3 dimer to sites in the N-terminal domain. We have identified Ser-151 and Ser-230 in the N-terminal domain as functional 14-3-3 binding sites utilized by cdc25B in vivo. These low affinity sites cooperate to bind the 14-3-3 dimer bound to the high affinity Ser-323 site, thus forming an intramolecular bridge that constrains cdc25B structure to prevent access of the catalytic site. Loss of 14-3-3 binding to either N-terminal site relaxes cdc25B structure sufficiently to permit access to the catalytic site, and the nuclear export sequence located in the N-terminal domain. Mutation of the Ser-323 site was functionally equivalent to the mutation of all three sites, resulting in the complete loss of 14-3-3 binding, increased access of the catalytic site, and access to nuclear localization sequence.