969 resultados para I-2 Newcastle disease virus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several orthopoxviruses (OPV) and Borna disease virus (BDV) are enveloped, zoonotic viruses with a wide geographical distribution. OPV antibodies cross-react, and former smallpox vaccination has therefore protected human populations from another OPV infection, rodent-borne cowpox virus (CPXV). Cowpox in humans and cats usually manifests as a mild, self-limiting dermatitis and constitutional symptoms, but it can be severe and even life-threatening in the immunocompromised. Classical Borna disease is a progressive meningoencephalomyelitis in horses and sheep known in central Europe for centuries. Nowadays the virus or its close relative infects humans and also several other species in central Europe and elsewhere, but the existence of human Borna disease with its suspected neuropsychiatric symptoms is controversial. The epidemiology of BDV is largely unknown, and the present situation is even more intriguing following the recent detection of several-million-year-old, endogenized BDV genes in primate and various other vertebrate genomes. The aims of this study were to elucidate the importance of CPXV and BDV in Finland and in possible host species, and particularly to 1) establish relevant methods for the detection of CPXV and other OPVs as well as BDV in Finland, 2) determine whether CPXV and BDV exist in Finland, 3) discover how common OPV immunity is in different age groups in Finland, 4) characterize possible disease cases and clarify their epidemiological context, 5) establish the hosts and possible reservoir species of these viruses and their geographical distribution in wild rodents, and 6) elucidate the infection kinetics of BDV in the bank vole. An indirect immunofluorescence assay and avidity measurement were established for the detection, timing and verification of OPV or BDV antibodies in thousands of blood samples from humans, horses, ruminants, lynxes, gallinaceous birds, dogs, cats and rodents. The mostly vaccine-derived OPV seroprevalence was found to decrease gradually according to the year of birth of the sampled human subjects from 100% to 10% in those born after 1977. On the other hand, OPV antibodies indicating natural contact with CPXV or other OPVs were commonly found in domestic and wild animals: the horse, cow, lynx, dog, cat and, with a prevalence occasionally even as high as 92%, in wild rodents, including some previously undetected species and new regions. Antibodies to BDV were detected in humans, horses, a dog, cats, and for the first time in wild rodents, such as bank voles (Myodes glareolus). Because of the controversy within the human Borna disease field, extra verification methods were established for BDV antibody findings: recombinant nucleocapsid and phosphoproteins were produced in Escherichia coli and in a baculovirus system, and peptide arrays were additionally applied. With these verification assays, Finnish human, equine, feline and rodent BDV infections were confirmed. Taken together, wide host spectra were evident for both OPV and BDV infections based on the antibody findings, and OPV infections were found to be geographically broadly distributed. PCR amplification methods were utilised for hundreds of blood and tissue samples. The methods included conventional, nested and real-time PCRs with or without the reverse transcription step and detecting four or two genes of OPVs and BDV, respectively. OPV DNA could be amplified from two human patients and three bank voles, whereas no BDV RNA was detected in naturally infected individuals. Based on the phylogenetic analyses, the Finnish OPV sequences were closely related although not identical to a Russian CPXV isolate, and clearly different from other CPXV strains. Moreover, the Finnish sequences only equalled each other, but the short amplicons obtained from German rodents were identical to monkeypox virus, in addition to German CPXV variants. This reflects the close relationship of all OPVs. In summary, RNA of the Finnish BDV variant could not be detected with the available PCR methods, but OPV DNA infrequently could. The OPV species infecting the patients of this study was proven to be CPXV, which is most probably also responsible for the rodent infections. Multiple cell lines and some newborn rodents were utilised in the isolation of CPXV and BDV from patient and wildlife samples. CPXV could be isolated from a child with severe, generalised cowpox. BDV isolation attempts from rodents were unsuccessful in this study. However, in parallel studies, a transient BDV infection of cells inoculated with equine brain material was detected, and BDV antigens discovered in archival animal brains using established immunohistology. Thus, based on several independent methods, both CPXV and BDV (or a closely related agent) were shown to be present in Finland. Bank voles could be productively infected with BDV. This experimental infection did not result in notable pathological findings or symptoms, despite the intense spread of the virus in the central and peripheral nervous system. Infected voles commonly excreted the virus in urine and faeces, which emphasises their possible role as a BDV reservoir. Moreover, BDV RNA was regularly reverse transcribed into DNA in bank voles, which was detected by amplifying DNA by PCR without reverse transcription, and verified with nuclease treatments. This finding indicates that BDV genes could be endogenized during an acute infection. Although further transmission studies are needed, this experimental infection demonstrated that the bank vole can function as a potential BDV reservoir. In summary, multiple methods were established and applied in large panels to detect two zoonoses novel to Finland: cowpox virus and Borna disease virus. Moreover, new information was obtained on their geographical distribution, host spectrum, epidemiology and infection kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regular vaccinations with potent vaccine, in endemic countries and vaccination to live in non-endemic countries are the methods available to control foot-and-mouth disease. Selection of candidate vaccine strain is not only cumbersome but the candidate should grow well for high potency vaccine preparation. Alternative strategy is to generate an infectious cDNA of a cell culture-adapted virus and use the replicon for development of tailor-made vaccines. We produced a chimeric `O' virus in the backbone of Asia 1 and studied its characteristics. The chimeric virus showed high infectivity titre (>10(10)) in BHK 21 cell lines, revealed small plague morphology and there was no cross reactivity with antiserum against Asia I. The virus multiplies rapidly and reaches peak at 12 h post infection. The vaccine prepared with this virus elicited high antibody titres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foot-and-mouth disease virus (FMDV) is a significant economically and distributed globally pathogen of Artiodactyla. Current vaccines are chemically inactivated whole virus particles that require large-scale virus growth in strict bio-containment with the associated risks of accidental release or incomplete inactivation. Non-infectious empty capsids are structural mimics of authentic particles with no associated risk and constitute an alternate vaccine candidate. Capsids self-assemble from the processed virus structural proteins, VP0, VP3 and VP1, which are released from the structural protein precursor P1-2A by the action of the virus-encoded 3C protease. To date recombinant empty capsid assembly has been limited by poor expression levels, restricting the development of empty capsids as a viable vaccine. Here expression of the FMDV structural protein precursor P1-2A in insect cells is shown to be efficient but linkage of the cognate 3C protease to the C-terminus reduces expression significantly. Inactivation of the 3C enzyme in a P1-2A-3C cassette allows expression and intermediate levels of 3C activity resulted in efficient processing of the P1-2A precursor into the structural proteins which assembled into empty capsids. Expression was independent of the insect host cell background and leads to capsids that are recognised as authentic by a range of anti-FMDV bovine sera suggesting their feasibility as an alternate vaccine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 120 Pekin ducks were distributed at random into four experimental groups, vaccinated or not against Newcastle disease (ND): G1 (Ulster 2C strain), G2 (B1 strain), G3 (LaSota strain), and G4 (nonvaccinated group). At 60 days of age, all groups were challenged with a pathogenic ND virus (NDV) suspension, and a group of specific pathogen free (SPF) chicks (G5) was also inoculated. Cloacal and tracheal swabs from all birds were collected after six, 14, 20, and 30 days post-challenge for virus isolation. NDV was isolated in 100% of SPF chicks. Pekin ducks from all groups, vaccinated or not, did not show any ND clinical signs, demonstrating that these birds are not susceptible to ND clinical disease. In the control group (G4), the virus was isolated 20 to 30 days after challenge, suggesting their possible NDV carrier state. In the vaccinated groups, no virus was isolated. This demonstrates that vaccination of white Pekin ducks against NDV is important to reduce NDV shedding in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the importance of vaccination against Newcastle Disease (ND) in lovebirds (Agapornis roseicollis) and to investigate the state of carrier of the virus (NDV) in this species. There were used 48 lovebirds, distributed at random into 4 experimental groups: GI (Ulster 2C strain), Gil (B1 strain), Gill (LaSota strain) and GIV (non-vaccinated group). At 12 months of age, all groups were challenged with a pathogenic virus (NDV) suspension (ElD50 = 1081510.1 mL) and a group of Specific-Pathogen-Free (SPF) chicks were used as control of the virus. Cloaca) swabs from each bird were collected after 9, 14 and 21 days post-challenge for detection of genome viral excretion by Reverse Transcription Polymerase Chain Reaction RT-PCR. Lovebirds of GI, Gil and Gill did not demonstrate any signs of ND. They were refractory to the clinical disease. In lovebirds from the control group, NDV genome was detected 9 and 21 days after challenge. Therefore it was demonstrated the state of carrier of NDV by lovebirds. In birds from the vaccinated groups, genome viral excretion was not detected by RT-PCR. It was also demonstrated the importance of the vaccination in the suppression of the state of virus carrier of ND in lovebirds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infectious bursal disease (IBD) is an acute, highly contagious viral disease. The diagnosis of IBD depends on time-consuming and costly procedures, like virus isolation on chick embryos and histopathological examination, A double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), immunoperoxidase and reverse transcription polymerase chain reaction (RT-PCR) were applied in this study to detect classical IBD virus (IBDV) after three blind passages of the Lukert strain on chicken embryo related (CER) cell monolayer after different periods of infection: 6, 12, 24 and 48 h, Cytophatic effects were most evident 12 h post-infection (p.i.) but were observed at 6 h p.i. The maximum discrimination between IBDV-infected and uninfected cell suspensions obtained by the use of DAS-ELISA for virus detection corresponded to 0.597+/-0.02 and 0.010+/-0.01 after 12h p.i., respectively. The RT-PCR was performed using the set of primers A3.1 and A3.2 to amplify the VP2 region of the IBDV genome, This molecular technique demonstrated that from 6 h p.i., it was possible to detect the viral RNA. The results show that the CER cell line can be used for classical IBDV propagation, confirmed by the DAS-ELISA, immunoperoxidase and RT-PCR assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As key prey, the wild rabbit downsize constitutes a major drawback on the endangered Iberian lynx (Lynx pardinus) re-introduction in the Iberia. Several captive breeding units mostly located in Alentejo, endeavour the wild rabbit repopulation of depleted areas assigned for the lynx re-introduction. Here we report an RHDV2 outbreak that occurred in early 2016 in a wild rabbit captive breeding unit located in Barrancos municipality. The estimated mortality rate between March and April 2016 was approximately 8.67%. Anatomopathologic examination was carried out for 13 victimized rabbits. Molecular characterization was based on the complete vp60 capsid gene. The 13 rabbit carcasses investigated showed typical macroscopic RHD lesions testing positive to RHDV2- RNA. Comparison of the vp60 nucleotide sequences obtained from two specimens with others publically available disclosed similarities below 98.22% with RHDV2 strains originated in the Iberia and Azores and revealed that the two identical strains from Barrancos-2016 contain six unique single synonymous nucleotide polymorphisms. In the phylogenetic analysis performed, the Barrancos-2016 strains clustered apart from other known strains, meaning they may represent new evolutionary RHDV2 lineages. No clear epidemiological link could be traced for this outbreak where the mortalities were lower compared with previous years. Yet, network analysis suggested a possible connection between the missing intermediates from which the strains from Barrancos 2013, 2014 and 2016 have derived. It is therefore possible that RHDV2 has circulated endemically in the region since 2012, with periodic epizootic occurrences. Still, six years after its emergence in wild rabbits, RHDV2 continues to pose difficulties to the establishment of natural wild rabbit populations that are crucial for the self-sustainability of the local ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beak and feather disease virus (BFDV), the causative agent of psittacine beak and feather disease (PBFD) infects psittaciformes worldwide. We provide an annotated sequence record of three full-length unique genomes of BFDV isolates from budgerigars (Melopsittacus undulatus) from a breeding farm in South Africa. The isolates share >99% nucleotide sequence identity with each other and ~96% nucleotide sequence identity to two recent isolates (Melopsittacus undulatus) from Thailand but only between 91. 6 and 86. 6% identity with all other full-length BFDV sequences. Maximum-likelihood analysis and recombination analysis suggest that the South African budgerigar BFDV isolates are unique to budgerigars, are non-recombinant in origin, and represent a new genotype of BFDV. © 2010 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The further development of Taqman quantitative real-time PCR (qPCR) assays for the absolute quantitation of Marek's disease virus serotype 1 (MDV1) and Herpesvirus of turkeys (HVT) viruses is described and the sensitivity and reproducibility of each assay reported. Using plasmid DNA copies, the lower limit of detection was determined to be 5 copies for the MDV1 assay and 75 copies for the HVT assay. Both assays were found to be highly reproducible for Ct values and calculated copy numbers with mean intra- and inter-assay coefficients of variation being less than 5% for Ct and 20% for calculated copy number. The genome copy number of MDV1 and HVT viruses was quantified in PBL and feather tips from experimentally infected chickens, and field poultry dust samples. Parallelism was demonstrated between the plasmid-based standard curves, and standard curves derived from infected spleen material containing both viral and host DNA, allowing the latter to be used for absolute quantification. These methods should prove useful for the reliable differentiation and absolute quantitation of MDV1 and HVT viruses in a wide range of samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiji leaf gall, caused the Fiji disease virus (genus Fijivirus, family Reoviridae, FDV), is a serious disease of sugarcane, Saccharum officinarum L., in Australia and several other Asia-Pacific countries. In Australia FDV is transmitted only by the planthopper Perkinsiella saccharicida Kirkaldy (Hemiptera: Delphacidae), in a propagative manner. Successful transmission of FDV by single planthoppers confined to individual virus free plants is highly variable, even under controlled conditions. The research reported here addresses two possible sources of this variation: 1) gender, wing form, and life stage of the planthopper; and 2) genotype of the source plant. The acquisition of FDV by macropterous males, macropterous females, brachypterous females, and nymphs of P. saccharicida from infected plants was investigated using reverse transcription-polymerase chain reaction to diagnose FDV infection in the vector. The proportion of individuals infected with FDV was not statistically related to life stage, gender, or adult wing form of the vector. The acquisition of FDV by P. saccharicida from four cultivars of sugarcane was compared to assess the influence of plant genotype on acquisition. Those planthopper populations reared on diseased 'NCo310' plants had twice as many infected planthoppers as those reared on 'Q110', 'WD1', and 'WD2'. Therefore, variation in FDV acquisition in this system is not the result of variation in the gender, wing form and life stage of the P. saccharicida vectors. The cultivar used as the source plant to rear vector populations does affect the proportion of infected planthoppers in a population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiji leaf gall (FLG) caused by Sugarcane Fiji disease virus (SCFDV) is transmitted by the planthopper Perkinsiella saccharicida. FLG is managed through the identification and exploitation of plant resistance. The glasshouse-based resistance screening produced inconsistent transmission results and the factors responsible for that are not known. A series of glasshouse trials conducted over a 2-year period was compared to identify the factors responsible for the erratic transmission results. SCFDV transmission was greater when the virus was acquired by the vector from a cultivar that was susceptible to the virus than when the virus was acquired from a resistant cultivar. Virus acquisition by the vector was also greater when the vector was exposed to the susceptible cultivars than when exposed to the resistant cultivar. Results suggest that the variation in transmission levels is due to variation in susceptibility of sugarcane cultivars to SCFDV used for virus acquisition by the vector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, transgenic plants expressing immunogenic proteins of foot-and-mouth disease virus (FMDV) have been used as oral or parenteral vaccines against foot-and-mouth disease (FMD). They exhibit advantages like cost effectiveness, absence of processing, thermostability, and easy oral application. FMDV VP1 protein of single serotype has been mostly used as immunogen. Here we report the development of a bivalent vaccine with tandem-linked VP1 proteins of two serotypes, A and O, present in transgenic forage crop Crotalaria juncea. The expression of the bivalent protein in the transgenic plants was confirmed by Western blot analysis. Guinea pig reacted to orally or parenterally applied vaccine by humoral as well as cell-mediated immune responses including serum antibodies and stimulated lymphocytes, respectively. The vaccine protected the animals against a challenge with the virus of serotype A as well as O. This is the first report on the development of a bivalent FMD vaccine using a forage crop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three Rana grylio virus (RGV) isolates and lymphocystis disease virus (LCDV-C) were molecularly characterized by antigenicity comparison, Western blot detection of viral polypeptides, restriction fragment length polymorphism analysis of viral genomes, and MCP sequence analysis. Significant antigenicity differences existed among the three RGV isolates and LCDV-C. Western blot detection indicated that the viral polypeptides of three RGV isolates could be recognized by the anti-RGV9807 serum, whereas no bands were observed in the LCDV-C, and significant differences exist among the band patterns of three RGV isolates. Restriction fragment length polymorphism (RFLP) analysis was performed by digesting genomic DNA of the four iridovirus isolates with restriction endonucleases HindIII, KpnI, XbaI and BamHI. On the whole, obvious discrepancies existed between LCDV-C and RGV isolates, and some significant band pattern differences were also revealed between RGV9808 and RGV9506 (or RGV9807) in the profiles of restriction endonucleases Xbal, Kpn I and BamHI. PCR amplification and sequence analysis of MCP gene sequence further revealed their phylogenetic relationship among the three RGV isolates, LCDV-C and other iridoviruses. RGV9506, RGV9807 and RGV9808 are clustered together with other ranaviruses, such as FV3, BIV, TFV and ENHV, although the RGV9808 is more close to EHNV than to other ranaviruses. Additionally, LCDV-C is clustered with LCDV-1, the type species of genus Lymphocystisvirus. The current study provides clear evidence that significant genetic difference exists among the three RGV isolates. Therefore, further work on comparative genomic studies will contribute significantly to understanding of their taxonomic position and pathological mechanism. (C) 2005 Elsevier B.V. All rights reserved.