916 resultados para Hypothalamo-pituitary-adrenocortical axis
Resumo:
Exogenous administration of glucocorticoids is a widely used and efficient tool to investigate the effects of elevated concentrations of these hormones in field studies. Because the effects of corticosterone are dose and duration-dependent, the exact course of plasma corticosterone levels after exogenous administration needs to be known. We tested the performance of self-degradable corticosterone pellets (implanted under the skin) in elevating plasma corticosterone levels. We monitored baseline (sampled within 3min after capture) total corticosterone levels and investigated potential interactions with corticosteroid-binding-globulin (CBG) capacity and the endogenous corticosterone response to handling in Eurasian kestrel Falco tinnunculus and barn owl Tyto alba nestlings. Corticosterone pellets designed for a 7-day-release in rodents elevated circulating baseline total corticosterone during only 2-3 days compared to placebo-nestlings. Highest levels occurred 1-2days after implantation and levels decreased strongly thereafter. CBG capacity was also increased, resulting in a smaller, but still significant, increase in baseline free corticosterone levels. The release of endogenous corticosterone as a response to handling was strong in placebo-nestlings, but absent 2 and 8 days after corticosterone pellet implantation. This indicates a potential shut-down of the hypothalamo-pituitary-adrenal axis after the 2-3 days of elevated baseline corticosterone levels. 20 days after pellet implantation, the endogenous corticosterone response to handling of nestlings implanted with corticosterone pellets attained similar levels as in placebo-nestlings. Self-degradable pellets proved to be an efficient tool to artificially elevate circulating baseline corticosterone especially in field studies, requiring only one intervention. The resulting peak-like elevation of circulating corticosterone, the concomitant elevation of CBG capacity, and the absence of an endogenous corticosterone response to an acute stressor have to be taken into account.
Resumo:
Epidemiological studies indicate that children born small for gestational age (SGA) have an increased risk of metabolic and cardiovascular disorders as adults. This suggests that foetal undernutrition leads to permanent metabolic alterations, which predispose to metabolic abnormalities upon exposure to environmental factors such as low physical activity and/or high-energy intake in later life (thrifty phenotype hypothesis). However, this relationship is not restricted to foetal undernutrition or intrauterine growth retardation, but is also found for children born premature, or for high birth weight children. Furthermore, early post-natal nutrition, and more specifically catch-up growth, appear to modulate cardiovascular risk as well. Intrauterine growth retardation can be induced in animal models by energy/protein restriction, or ligation of uterine arteries. In such models, altered glucose homeostasis, including low beta-cell mass, low insulin secretion and insulin resistance is observed after a few weeks of age. In humans, several studies have confirmed that children born SGA have insulin resistance as adolescents and young adults. Alterations of glucose homeostasis and increased lipid oxidation can indeed be observed already in non-diabetic children born SGA at early pubertal stages. These children also have alterations of stature and changes in body composition (increased fat mass), which may contribute to the pathogenesis of insulin resistance. Permanent metabolic changes induced by foetal/early neonatal nutrition (metabolic inprinting) may involve modulation of gene expression through DNA methylation, or alterations of organ structure. It is also possible that events occurring during foetal/neonatal development lead to long-lasting alterations of the hypothalamo-pituitary-adrenal axis or the hypothalamo-pituitary-insulin-like growth factor-1 axis.
Resumo:
The main purpose of the present study was to determine the relationship between salivary cortisol concentrations and self-report anxiety in 50 adolescent and 178 non-adolescent women during the last month of pregnancy. The subjects were randomly selected from a previous study involving women who attended antenatal care from September 1997 to August 2000 at 17 health services in Southeast Brazil. Salivary cortisol was measured with an enzyme immunoassay kit, and anxiety was assessed by the State-Trait Anxiety Inventories (STAI) of Spielberger. After saliva collection, the participants completed the STAI. Mean concentrations of cortisol for both pregnant adolescents (14.17 ± 6.78 nmol/l) and non-adolescents (13.81 ± 8.51 nmol/l) were similar (P = 0.89). Forty-three percent of the pregnant adolescents and 30.5% of the non-adolescents felt anxious at the time of being questioned (State Anxiety Inventory (SAI) scores >40; P = 0.06). Cortisol concentrations in adolescents were negatively related to the SAI scores (r = -0.39; P = 0.01) which assess a temporary condition of anxiety. There was a statistically significant difference in mean cortisol concentrations between adolescents with low (<=40) and high (>40) SAI scores (P = 0.03, t-test), but no differences for non-adolescents. The negative relationship between salivary cortisol concentrations and anxiety scores in adolescents may be due to puberty-related hormone differences during this period of life. Pregnant adolescents may possess unique biological or psychological characteristics compared to adults and non-pregnant adolescents. Thus, we need to know more about the hypothalamic-pituitary-adrenocortical axis of pregnant adolescents.
Resumo:
Depression is associated with glucocorticoid hypersecretion, due to dysfunction of the hypothalamo-pituitary-adrenocorticol axis (HPA-axis). Because excess glucocorticoids are associated with depressive-like features in humans, glucocorticoid receptor antagonists are currently being tested for antidepressant efficacy in clinical trials. In the current study the hypothesis that mifepristone (RU486), a glucocorticoid receptor antagonist, would decrease the neuroendocrine and central HPA-axis responses to an acute stressor and attentuate depressive like behavior in an animal model of behavioral helplessness (forced swim test) was tested. Adult male rats were treated with 10 mglkg RU486 (subcutaneous) for five days and then exposed to a IO-minute forced swim test (FST), conducted in Plexiglas cylinders. FST sessions were videotaped for later analysis of behavioral immobility. Plasma ACTH and corticosterone CORT were measured at 15min and 90min after FST cessation. Animals were perfused and brains were collected for immunocytochemical assessment of c-Fos expression in the medial prefrontal cortex (mPFC), a brain region implicated in both depression and central control of the HPA axis. RU486 significantly decreased peak ACTH and CORT concentrations following FST exposure. In addition, glucocorticoid negative feedback was at1enuated in RU486-treated animals exposed to the FST. Exposure to FST alone induced c-FOS expression in the mPFC, as measured by the number of c-Fos positive neurons. Treatment with RU486 significantly increased the number of rnPFC c-Fos positive cell following FST exposure. The behavioral data obtained from FST paradigm, demonstrated that RU486 decreased immobility in the FST illustrating the potential efficacy of this drug as an antidepressant. Collectively these data suggest that RU486 dampens HPA-axis responses to stress, possibly by enhancing the excitability of stress-inhibitory neurons in the mPFC. This is particularly exciting, given the fact that this neural region is associated with decreased neural activity during depression in humans.
Resumo:
Pós-graduação em Pediatria - FMB
Resumo:
The medial amygdaloid nucleus (MeA) is a part of the limbic system and is involved in cardiovascular modulation. We previously reported that microinjection of noradrenaline (NA) into the MeA of unanesthetized rats caused pressor and bradycardiac responses, which were mediated by acute vasopressin release into the systemic circulation. In the present study, we tested the possible involvement of magnocellular neurons of the paraventricular (PVN) and/or supraoptic (SON) of the hypothalamus that synthesize vasopressin in the cardiovascular pathway activated by the microinjection of NA into the MeA. Pressor and bradycardiac responses to the microinjection of NA (27 nmol/100 nL) into the MeA were blocked by pretreatment of either the PVN or the SON with cobalt chloride (CoCl2, 1 mM/100 nL), thus indicating that both hypothalamic nuclei mediate the cardiovascular responses evoked by microinjection of NA Into the MeA. Our results suggest that the pressor and bradycardiac response caused by the microinjection of NA into the MeA is mediated by magnocellular neurons in both the PVN and SON. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Pain markedly activates the hypothalamic-pituitary-adrenal (HPA) axis and increases plasma corticosterone release interfering significantly with nociceptive behaviour as well as the mechanism of action of analgesic drugs. Aims/Methods: In the present study, we monitored the time course of circulating corticosterone in two mouse strains (C57Bl/6 and Balb/C) under different pain models. In addition, the stress response was investigated following animal handling, intrathecal (i.t.) manipulation and habituation to environmental conditions commonly used in nociceptive experimental assays. We also examined the influence of within-cage order of testing on plasma corticosterone. Results: Subcutaneous injection of capsaicin precipitated a prompt stress response whereas carrageenan and complete Freund's adjuvant induced an increased corticosterone release around the third hour post-injection. However, carrageenan induced a longer increased corticosterone in C57Bl/6 mice. In partial sciatic nerve ligation, neuropathic pain model corticosterone increased only in the first days whereas mechanical hypersensitivity remained much longer. Animal handling also represents an important stressor whereas the i.t. injection per se does not exacerbate the handling-induced stress response. Moreover, the order of testing animals from the same cage does not interfere with plasma corticosterone levels in the intrathecal procedure. Animal habituation to the testing apparatus also does not reduce the immediate corticosterone increase as compared with non-habituated mice. Conclusion: Our data indicate that HPA axis activation in acute and chronic pain models is time dependent and may be dissociated from evoked hyperalgesia. Therefore, HPA-axis activation represents an important variable to be considered when designing experimental assays of persistent pain as well as for interpretation of data.
Resumo:
The hypothalamo-pituitary-adrenal axis shows functional changes in alcoholics, with raised glucocorticoid release during alcohol intake and during the initial phase of alcohol withdrawal. Raised glucocorticoid concentrations are known to cause neuronal damage after withdrawal from chronic alcohol consumption and in other conditions. The hypothesis for these studies was that chronic alcohol treatment would have differential effects on corticosterone concentrations in plasma and in brain regions. Effects of chronic alcohol and withdrawal on regional brain corticosterone concentrations were examined using a range of standard chronic alcohol treatments in two strains of mice and in rats. Corticosterone was measured by radioimmunoassay and the identity of the corticosterone extracted from brain was verified by high performance liquid chromatography and mass spectrometry. Withdrawal from long term (3 weeks to 8 months) alcohol consumption induced prolonged increases in glucocorticoid concentrations in specific regions of rodent brain, while plasma concentrations remained unchanged. This effect was seen after alcohol administration via drinking fluid or by liquid diet, in both mice and rats and in both genders. Shorter alcohol treatments did not show the selective effect on brain glucocorticoid levels. During the alcohol consumption the regional brain corticosterone concentrations paralleled the plasma concentrations. Type II glucocorticoid receptor availability in prefrontal cortex was decreased after withdrawal from chronic alcohol consumption and nuclear localization of glucocorticoid receptors was increased, a pattern that would be predicted from enhanced glucocorticoid type II receptor activation. This novel observation of prolonged selective increases in brain glucocorticoid activity could explain important consequences of long term alcohol consumption, including memory loss, dependence and lack of hypothalamo-pituitary responsiveness. Local changes in brain glucocorticoid levels may also need to be considered in the genesis of other mental disorders and could form a potential new therapeutic target.
Resumo:
By most accounts the psychological stressor restraint produces a distinct pattern of neuronal activation in the brain. However, some evidence is incongruous with this pattern, leading us to propose that the restraint- induced pattern in the central nervous system might depend on the duration of restraint used. We therefore determined the pattern of neuronal activation ( as indicated by the presence of Fos protein) seen in the paraventricular nucleus (PVN), bed nucleus of the stria terminalis, amygdala, locus coeruleus, nucleus tractus solitarius (NTS), ventrolateral medulla (VLM) and thoracic spinal cord of the rat in response to 0, 15, 30 or 60 min periods of restraint. We found that although a number of cell groups displayed a linear increase in activity with increasing durations of restraint ( e. g. hypothalamic corticotrophin-releasing factor (CRF) cells, medial amygdala neurons and sympathetic preganglionic neurons of the thoracic spinal cord), a number of cell groups did not. For example, in the central amygdala restraint produced both a decrease in CRF cell activity and an increase in non-CRF cell activity. In the locus coeruleus, noradrenergic neurons did not display Fos in response to 15 min of restraint, but were significantly activated by 30 or 60 min restraint. After 30 or 60 min restraint a greater degree of activation of more rostral A1 noradrenergic neurons was observed compared with the pattern of A1 noradrenergic neurons in response to 15 min restraint. The results of this study demonstrate that restraint stress duration determines the amount and the pattern of neuronal activation seen in response to this psychological stressor.
Resumo:
Effects of a short-term hyper- and hypoprolactinaemia on serum concentrations of LH, testosterone and semen quality in six male Beagles were investigated. Blood samples were collected at 3-day intervals for 12 weeks. The time span was divided into five 3-week periods: pre-treatment, metoclopramide (MCP) treatment (0.2 mg/kg orally three times daily), cabergoline (CAB) treatment (5 mu g/kg orally once daily), post-treatment 1 and post-treatment 2. In the latter, only semen characteristics were evaluated. Semen parameters were analyzed once per week during the whole 15-week investigation time. At the end of each period, the effects of a single intravenous injection of thyrotropin-releasing hormone (TRH; 10 mu g/kg) on the secretion of prolactin (PRL), LH, testosterone, thyroid-stimulating hormone and thyroxine (T4) were investigated. Pre-treatment serum PRL concentration increased under MCP (p < 0.05), followed by a decrease under CAB administration (p < 0.05). Luteinizing hormone and testosterone concentrations were not affected. Except for straight-line sperm velocity, semen quality did not differ between collection periods. A single iv TRH injection induced a significant PRL increase at 20 min in all experimental periods except during CAB treatment. Luteinizing hormone and testosterone did not show clear TRH-related changes. Basic T4 levels were significantly reduced after CAB treatment ( p < 0.05). The results of the present study demonstrate that MCP-induced short-term hyperprolactinaemia in male beagles does not seriously affect the hypothalamo-pituitary axis and semen quality.
Resumo:
The aim of this study was to evaluate the effect of ovariectomy on the acute-phase response of inflammatory stress. Ex vivo adrenocortical, peripheral mononuclear cell (PMNC) and adipocyte activities were studied in intact and ovariectomized mice. Endotoxemia was mimicked by intraperitoneal administration of bacterial lipopolysaccharide (LPS; 25 mg per mouse) to sham-operated and 21-day ovariectomized mice. Circulating corticosterone, tumor necrosis factor-alpha (TNFalpha) and leptin concentrations were monitored before and 30-120 min after the administration of LPS. Additionally, in vitro experiments were performed with isolated corticoadrenal cells, PMNCs and omental adipocytes from sham-operated and ovariectomized mice incubated with specific secretagogues. The results indicate that while ovariectomy enhanced TNFalpha secretion after in vivo administration of LPS, it reduced corticoadrenal response and abrogated LPS-elicited leptin secretion into the circulation. While the corticoadrenal sensitivity to ACTH stimulation was reduced by ovariectomy, the LPS-induced PMNC response was not affected. Exogenous leptin enhanced baseline PMNC function regardless of surgery. Finally, ovariectomy drastically reduced in vitro adipocyte functionality. Our data support the notion that ovariectomy modified neuroendocrine-immune-adipocyte axis function and strongly suggest that ovarian activity could play a pivotal role in the development of an adequate immune defense mechanism after injury.
Resumo:
Les contrevenants de la conduite avec capacités affaiblies (CCA) n’entrent pas tous dans les registres de la sécurité routière avec le même risque de récidive. Pour pallier cette hétérogénéité, cette thèse propose de modéliser les interrelations entre les traits de personnalité et les comportements à risque associés à la récidive et de détecter un sous-groupe de contrevenants au risque de récidive élevé à l’aide de l’axe hypothalamo-hypophyso-surrénalien (HHS). Plus particulièrement, les trois articles de cette thèse s’intéressent au cortisol, l’hormone du stress. Le premier article élabore un modèle théorique réconciliant les connaissances sur l’axe HHS issues du domaine de la CCA et de domaines connexes. Lors de précédentes études, le nombre de condamnations antérieures pour CCA a été associé négativement à la réactivité du cortisol à la suite d’une situation stressante. Chez les récidivistes, cette faible réactivité s’explique partiellement par la recherche d’expériences, une dimension de la recherche de sensations. Au-delà ce trait de personnalité désinhibiteur, une faible activité de l’axe HHS a été associée à d’autres traits (c.-à-d. impulsivité et tendances antisociales) et d’autres comportements à risque (c.-à-d. infractions routières, arrestations criminelles et consommation problématique de substances psychoactives). Ce modèle intégrant la réactivité du cortisol permet une conceptualisation approfondie des diverses caractéristiques des contrevenants de la CCA et explique hypothétiquement la répétition des comportements à risque. Les deux articles suivants se penchent sur l’intérêt empirique d’utiliser l’axe HHS pour déterminer un sous-groupe de contrevenants à risque élevé de récidive. Plus précisément, le deuxième article émet l’hypothèse que les récidivistes (n = 30) ayant une faible activité de leur cortisol (c.-à-d. médiane de la surface sous la courbe relative au niveau de base et relative à la réactivité) ont davantage de traits de personnalité désinhibiteurs et de comportements à risque que les récidivistes ayant une forte activité. L’hypothèse n’a pas été confirmée. Au contraire, les récidivistes présentant une faible réactivité commettent moins d’infractions routières et d’arrestations criminelles que ceux ayant une forte réactivité. Quant à lui, le troisième article investigue une hypothèse similaire auprès des contrevenants primaires (n = 139). Les contrevenants manifestant une faible réactivité du cortisol (c.-à-d. différence entre prélèvements post-stress et pré-stress) ont davantage d’impulsivité attentionnelle, de non-planification, d’arrestations criminelles et de cigarettes fumées par jour que les contrevenants ayant une forte réactivité. Lors d’analyses exploratoires, la présence d’une variété de traits de personnalité désinhibiteurs et de comportements à risque chez les contrevenants primaires présentant une faible réactivité lorsque comparé au groupe contrôle (n = 31) suggère encore une fois leur risque élevé de récidive. L’intérêt d’ajouter un mécanisme neurobiologique pour modéliser les interrelations entre les traits de personnalité désinhibiteurs et les comportements à risque des contrevenants de la CCA a été exploré dans cette thèse. La détermination d’un sous-groupe de contrevenants présentant un risque élevé de récidive, à l’aide de l’axe HHS, semble davantage profitable auprès de l’hétérogène population des contrevenants primaires. En contrepartie, l’axe HHS ne permet pas de déterminer un sous-groupe ayant une problématique sévère auprès des récidivistes à l’extrême du continuum du risque.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Adrenocortical tumors are rare in children and present with variable signs depending on the type of hormone excess. We herein describe the unusual presentation of a child with adrenocortical tumor and introduce the concept of in vitro chemosensitivity testing. CASE REPORT: A 10.5-year-old girl presented with hypertrichosis/hirsutism and weight loss. The weight loss and behavioral problems, associated with halted puberty and growth, led to the initial diagnosis of anorexia nervosa. However, subsequent weight gain but persisting arrest in growth and puberty and the appearance of central fat distribution prompted further evaluation. RESULTS AND FOLLOW-UP: 24h-urine free cortisol was elevated. Morning plasma ACTH was undetectable, while cortisol was elevated and circadian rhythmicity was absent. Thus a hormonally active adrenal cortical tumor (ACT) was suspected. On magnetic resonance imaging (MRI) a unilateral, encapsulated tumor was found which was subsequently removed surgically. Tissue was investigated histologically and for chemosensitivity in primary cell cultures. Although there were some risk factors for malignancy, the tumor was found to be a typical adenoma. Despite this histology, tumor cells survived in culture and were sensitive to cisplatin in combination with gemcitabine or paclitaxel. At surgery, the patient was started on hydrocortisone replacement which was unsuccessfully tapered over 3 months. Full recovery of the hypothalamus-pituitary-adrenal axis occurred only after 3 years. CONCLUSIONS: The diagnosis of a hormonally active adrenocortical tumor is often delayed because of atypical presentation. Cortisol replacement following unilateral tumor excision is mandatory and may be required for months or years. Individualized chemosensitivity studies carried out on primary cultures established from the tumor tissue itself may provide a tool in evaluating the effectiveness of chemotherapeutic drugs in the event that the adrenocortical tumor may prove to be carcinoma.
Resumo:
Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic-pituitary-adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic-pituitary-adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1beta. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1beta, we next mapped the effects of similar lesions on interleukin-1beta-induced Fos expression in regions previously shown to regulate the hypothalamic-pituitary-adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1beta, an outcome that is difficult to reconcile with a simple medial prefrontal cortex-bed nucleus of the stria terminalis-corticotropin-releasing factor cell control circuit.