989 resultados para Hydrolysis of fish oil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Enriching poultry meat with long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) can increase low population intakes of LC n-3 PUFA, but fishy taints can spoil reheated meat. This experiment determined the effect of different amounts of LC n-3 PUFA and vitamin E in the broiler diet on the fatty acid composition and sensory characteristics of the breast meat. Ross 308 broilers (120) were randomly allocated to one of five treatments from 21 to 42 days of age. Diets contained (g kg−1) 0, 9 or 18 LC n-3 PUFA (0LC, 9LC, 18LC), and 100, 150 or 200 mg LD--tocopherol acetate kg−1 (E). The five diets were 0LC100E, 9LC100E, 18LC100E, 18LC150E, 18LC200E, with four pens per diet, except 18LC100E (eight pens). Breast meat was analysed for fatty acids (uncooked) and sensory analysis by R-index (reheated). RESULTS: LC n-3 PUFA content (mg kg−1 meat) was 514 (0LC100E) and 2236 (9LC and 18LC). Compared with 0LC100E, meat from 18LC100E and 18LC150E tasted significantly different, while 23% of panellists detected fishy taints in 9LC100E and 18LC200E. CONCLUSION: Chicken meat can be enriched with nutritionally meaningful amounts of LC n-3 PUFA, but > 100 mg dl--tocopherol acetate kg−1 broiler diet is needed to protect reheated meat from oxidative deterioration. Copyright © 2010 Society of Chemical Industry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To investigate the impact of apolipoprotein E (apoE) genotype on the response of the plasma lipoprotein profile to eicosapentaenoic acid (EPA) versus docosahexaenoic acid (DHA) intervention in humans. Methods and results: 38 healthy normolipidaemic males, prospectively recruited on the basis of apoE genotype (n = 20 E3/E3 and n = 18 E3/E4), completed a double-blind placebo-controlled cross-over trial, consisting of 3 × 4 week intervention arms of either control oil, EPA-rich oil (ERO, 3.3 g EPA/day) or DHA-rich oil (DRO, 3.7 g DHA/day) in random order, separated by 10 week wash-out periods. A significant genotype-independent 28% and 19% reduction in plasma triglycerides in response to ERO and DRO was observed. For total cholesterol (TC), no significant treatment effects were evident; however a significant genotype by treatment interaction emerged (P = 0.045), with a differential response to ERO and DRO in E4 carriers. Although the genotype × treatment interaction for LDL-cholesterol (P = 0.089) did not reach significance, within DRO treatment analysis indicated a 10% increase in LDL (P = 0.029) in E4 carriers with a non-significant 4% reduction in E3/E3 individuals. A genotype-independent increase in LDL mass was observed following DRO intervention (P = 0.018). Competitive uptake studies in HepG2 cells using plasma very low density lipoproteins (VLDL) from the human trial, indicated that following DRO treatment, VLDL2 fractions obtained from E3/E4 individuals resulted in a significant 32% (P = 0.002) reduction in LDL uptake relative to the control. Conclusions: High dose DHA supplementation is associated with increases in total cholesterol in E4 carriers, which appears to be due to an increase in LDL-C and may in part negate the cardioprotective action of DHA in this population subgroup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Experimental elevation of nonesterified fatty acids (NEFAs) impairs endothelial function, but the effect of NEFA composition is unknown. Objective: The objective was to test the effect of acute elevation of NEFAs enriched with either saturated fatty acids (SFAs) or SFAs with long-chain (LC) n−3 (omega-3) PUFAs on vascular function measured via flow-mediated dilatation (FMD), laser Doppler iontophoresis (LDI), and digital volume pulse (DVP). Design: In 59 subjects (30 men and 29 women), repeated oral fat feeding of either palm stearin (SFA) or palm stearin with DHA-rich fish oil (SFA + LC n−3 PUFA) was performed on 2 separate occasions with continuous heparin infusion to elevate NEFAs for a duration of 60 to 240 min. Vascular function was measured at baseline and at the end of NEFA elevation; venous blood was collected for measurement of lipids and circulating markers of endothelial function. Results: NEFA elevation during consumption of the SFA-rich drinks was associated with a marked impairment of FMD, whereas consumption of SFAs + LC n−3 PUFAs improved FMD response, with a mean (±SEM) difference of 2.06 ± 0.29% (P < 0.001). Positive correlations were found with percentage weight of LC n−3 PUFAs in circulating NEFAs and change in FMD response [Spearman's rho (rs) = 0.460, P < 0.001]. LDI measures increased during both treatments (P ≤ 0.026), and there was no change in DVP indexes. Conclusions: The composition of NEFAs can acutely affect FMD. The beneficial effect of LC n−3 PUFAs on postprandial vascular function warrants further investigation but may be mediated by nitric oxide–independent mechanisms. This trial is registered at clinicaltrials.gov as NCT01351324.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Although a large number of randomized controlled trials (RCTs) have examined the impact of the n-3 (ω-3) fatty acids EPA (20:5n-3) and DHA (22:6n-3) on blood pressure and vascular function, the majority have used doses of EPA+DHA of > 3 g per d,which are unlikely to be achieved by diet manipulation. Objective: The objective was to examine, using a retrospective analysis from a multi-center RCT, the impact of recommended, dietary achievable EPA+DHA intakes on systolic and diastolic blood pressure and microvascular function in UK adults. Design: Healthy men and women (n = 312) completed a double-blind, placebo-controlled RCT consuming control oil, or fish oil providing 0.7 g or 1.8 g EPA+DHA per d in random order each for 8 wk. Fasting blood pressure and microvascular function (using Laser Doppler Iontophoresis) were assessed and plasma collected for the quantification of markers of vascular function. Participants were retrospectively genotyped for the eNOS rs1799983 variant. Results: No impact of n-3 fatty acid treatment or any treatment * eNOS genotype interactions were evident in the group as a whole for any of the clinical or biochemical outcomes. Assessment of response according to hypertension status at baseline indicated a significant (P=0.046) fish oil-induced reduction (mean 5 mmHg) in systolic blood pressure specifically in those with isolated systolic hypertension (n=31). No dose response was observed. Conclusions: These findings indicate that, in those with isolated systolic hypertension, daily doses of EPA+DHA as low as 0.7 g bring about clinically meaningful blood pressure reductions which, at a population level, would be associated with lower cardiovascular disease risk. Confirmation of findings in an RCT where participants are prospectively recruited on the basis of blood pressure status is required to draw definite conclusions. The Journal of Nutrition NUTRITION/2015/220475 Version 4

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used c-Fos immunoreactivity to estimate neuronal activation in hypothalamic feeding-regulatory areas of 3-month-old rats fed control or oil-enriched diets (soy or fish) since weaning. While no diet effect was observed in c-Fos immunoreactivity of 24-h fasted animals, the acute response to refeeding was modified by both hyperlipidic diets but with different patterns. Upon refeeding, control-diet rats had significantly increased c-Fos immunoreactivity only in the paraventricular hypothalamic nucleus (PVH, 142%). In soy-diet rats, refeeding with the soy diet increased c-Fos immunoreactivity in dorsomedial hypothalamic nucleus (DMH, 271%) and lateral hypothalamic area (LH, 303%). Refeeding fish-diet rats with the fish diet increased c-Fos immunoreactivity in PVH (161%), DMH (177%), VMH (81%), and ARC (127%). Compared to the fish-diet, c-Fos immunoreactivity was increased in LH by the soy-diet while it was decreased in ventromedial hypothalamic nucleus (VMH) and arcuate hypothalamic nucleus (ARC). Based on the known roles of the activated nuclei, it is suggested that, unlike the fish-diet, the soy-diet induced a potentially obesogenic profile, with high LH and low VMH/PVH activation after refeeding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of fatty acid composition modifications were examined in tissues of Murray cod fed diets containing fish oil (FO), canola oil (CO) and linseed oil (LO) for a 25-week period and subsequently transferred to a FO (finishing/wash-out) diet for a further 16 weeks. At the commencement of the wash-out period, following 25 weeks of vegetable oil substitution diets, the fatty acid compositions of Murray cod fillets were reflective of the respective diets. After transfer to the FO diet, differences decreased in quantity and in numerousness, resulting in a revert to the FO fatty acid composition. Changes in percentages of the fatty acids and total accumulation in the fillet could be described by exponential equations and demonstrated that major modifications occurred in the first days of the finishing period. A dilution model was tested to predict fatty acid composition. In spite of a general reliability of the model (Y=0.9234X+0.4260, R2=0.957, P<0.001, where X is the predicted percentage of fatty acid; Y the observed percentage of fatty acid), in some instances the regression comparing observed and predicted values was markedly different from the line of equity, indicating that the rate of change was higher than predicted (i.e. Y=0.4205X+1.191, R2=0.974, P<0.001, where X is the predicted percentage of α-linolenic acid; Y the observed percentage of α-linolenic acid). Ultimately, using the coefficient of distance (D), it was shown that the fatty acid composition of fish previously fed the vegetable oil diets returned to the average variability of the fillet fatty acid composition of Murray cod after 70 or 97 days (LO and CO respectively).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficacy of trout oil (TO), extracted from trout offal from the aquaculture industry, was evaluated in juvenile Murray cod Maccullochella peelii peelii (25.4-0.81 g) diets in an experiment conducted over 60 days at 23.7-0.8 °C. Five isonitrogenous (48% protein), isolipidic (16%) and isoenergetic (21.8 kJ gm1) diets, in which the fish oil fraction was replaced in increments of 25% (0-100%), were used. The best growth and feed efficiency was observed in fish fed diets containing 50-75% TO. The relationship of specific growth rate (SGR), food conversion ratio (FCR) and protein efficiency ratio (PER) to the amount of TO in the diets was described in each case by second-order polynomial equations (P<0.05), which were: SGR=-0.44TO2+0.52TO+1.23 (r2=0.90, P<0.05); FCR=0.53TO2-0.64TO+1.21 (r2=0.95, P<0.05); and PER=-0.73TO2+0.90TO+1.54 (r2=0.90, P<0.05). Significant differences in carcass and muscle proximate compositions were noted among the different dietary treatments. Less lipid was found in muscle than in carcass. The fatty acids found in highest amounts in Murray cod, irrespective of the dietary treatment, were palmitic acid (16:0), oleic acid (18:1n-9), linoleic acid (18:2n-6) and eicosapentaenoic acid (20:5n-3). The fatty acid composition of the muscle reflected that of the diets. Both the n-6 fatty acid content and the n-3 to n-6 ratio were significantly (P<0.05) related to growth parameters, the relationships being as follows. Percentage of n-6 in diet (X) to SGR and FCR: SGR=-0.12X2+3.96X-32.51 (r2=0.96) and FCR=0.13X2-4.47X+39.39 (r2=0.98); and n-3:n-6 ratio (Z) to SGR, FCR, PER: SGR=-2.02Z2+5.01Z-1.74 (r2=0.88), FCR=2.31Z2-5.70Z+4.54 (r2=0.93) and PER=-3.12Z2-7.56Z+2.80 (r2=0.88) respectively. It is evident from this study that TO could be used effectively in Murray cod diets, and that an n-3:n-6 ratio of 1.2 results in the best growth performance in Murray cod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Omega-3 oil from fish can be stabilised against oxidation using a variety of microencapsulation technologies. Complex coacervation has been used and found to be commercially useful for fortifying foods and beverages with long-chain omega-3 containing oils. Here we report a comparative human bioavailability study of microencapsulated omega-3 fish oil and standard fish-oil soft-gel capsules. Phospholipid levels of long-chain omega-3 fatty acids increased equivalently in both subjects groups. Also, triacylglycerol levels were reduced similarly in both groups. These results indicate that omega-3 fatty acids have equivalent bioavailability when delivered as microencapsulated complex coacervates or as soft-gel capsules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two groups of fish (Maccullochella peelii peelii) were fed for a 90-day conditioning period on a canola oil diet (CO) or a fish oil diet (FO). Canola oil diet fed fish were then shifted to the FO diet for a 90-day finishing period. A variable period of  starvation (0, 5, 10 and 15 days) was introduced to reduce the initial lipid level of CO fed fish at the beginning of the finishing period and therefore accelerate the rate of recovery of FO-like fatty acids. During starvation, fish did not show  significant reduction in total lipid content, either in the fillet or whole body. At the end of the conditioning period, fatty acid composition of the diet was mirrored in fish tissues. These differences came close to levelling out following re-feeding, with the exception of n - 6 polyunsaturated fatty acids (PUFA). However, no  effects of the starvation periods on the final fatty acid make-up of fish were recorded. The results of this trial show that Murray cod, when subjected to a starvation period of up to 15 days, does not lose an appreciable quantity of lipid and, therefore, the tested starvation approach to reduce the initial level of lipid has to be considered unsuccessful. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to test the hypothesis that the efficiency of a finishing period can be improved by reducing the initial fat content of fish fillets, by means of a period of food deprivation. Two groups of rainbow trout (Oncorhynchus mykiss) were fed for an 18-week grow-out period on a vegetable oil-based diet (VO) or a fish oil-based diet (FO). VO fed fish were then split into two sub groups: one (VO/FO) was shifted to the FO diet for 8 weeks, whilst the other (UF/FO) was deprived of food (unfed) for 2 weeks and then fed the FO diet for the remaining 6 weeks. The control treatment (FO/FO) was represented by fish continuously fed FO. The subsequent reduction of total fat in the UF/FO treatment was then responsible for a much faster recovery towards a FO-like fatty acid profile, validating the proposed hypothesis. However, the modification of the fatty acid composition of fish fillets during the feed withholding period, coupled with the postponement of the finishing diet, resulted in only minor beneficial effects of this strategy, and the loss of potential weight gain. However, the n-3 LC-PUFA content in UF/VO fish fillets was significantly higher than fish subjected to the VO/FO treatment.