990 resultados para Hydraulic structures.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Contract No. DA-22-079-civeng-63-104."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At head of cover title: Generalized computer program.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An integrated surface-subsurface hydrological model of Everglades National Park (ENP) was developed using MIKE SHE and MIKE 11 modeling software. The model has a resolution of 400 meters, covers approximately 1050 square miles of ENP, includes 110 miles of drainage canals with a variety of hydraulic structures, and processes hydrological information, such as evapotranspiration, precipitation, groundwater levels, canal discharges and levels, and operational schedules. Calibration was based on time series and probability of exceedance for water levels and discharges in the years 1987 through 1997. Model verification was then completed for the period of 1998 through 2005. Parameter sensitivity in uncertainty analysis showed that the model was most sensitive to the hydraulic conductivity of the regional Surficial Aquifer System, the Manning's roughness coefficient, and the leakage coefficient, which defines the canal-subsurface interaction. The model offers an enhanced predictive capability, compared to other models currently available, to simulate the flow regime in ENP and to forecast the impact of topography, water flows, and modifying operation schedules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atualmente, no estudo do comportamento de descarregadores de cheias por orifício, é necessário conhecer as pressões ao longo do descarregador, para várias alturas de água na albufeira. Este tipo de estudos tem sido usualmente realizado recorrendo a ensaios experimentais. No entanto, a utilização de modelos numéricos para a simulação do escoamento em estruturas hidráulicas encontra-se numa fase emergente. Neste sentido, a presente dissertação pretende apresentar um estudo numérico relativo ao escoamento em descarregadores de cheias por orifício. Por forma a efetuar o estudo numérico, foi utlizado o programa comercial de CFD FLOW-3D®, reproduzindo um modelo reduzido construído no Laboratório Nacional de Engenharia Civil (LNEC) correspondente a um descarregador por orifício. Para a realização das simulações numéricas foi necessário definir o objeto de estudo, a malha de cálculo, as condições de fronteira e as propriedades do fluido e objeto de modo a reproduzir as situações ensaiadas experimentalmente no LNEC. A proximidade dos resultados experimentais e numéricos para vários níveis de água na albufeira permitiu validar o modelo numérico para este tipo de escoamentos no interior do orifício.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Weirs are common structure to regulate discharge and flow control inwater conveyance channels and hydraulic structures. Labyrinth weirsconsidered one of economical and effective methods to increase the efficiency of weirs that crest length of weirs increase without a related increase in structure width. Therefore, flow discharge will be increased. Compared to use compound weir, there are some benefits including the simultaneous passage of floating materials such as wood, ice, etc. Also, sedimentations are pass through compound weir. The trapezoidal Labyrinth weir is one of the combined models. In present study 15 physical models that discussion effect changes sidewall angle of labyrinth weir on discharge coefficient of flow over and through the compound trapezoidal one cycle Labyrinth weir. Also, it is developed design curves with various shapes and configurations. The researchshowed here mainly objectives at determining the coefficient of discharge for flow-over trapezoidal labyrinth weir by performing tests at wide range of values of side wall angles (α) from 6° to 35° and compound linear weir to be compared.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The long-term performance of infrastructure depends on reliable and sustainable designs. Many of Pennsylvania’s streams experience sediment transport problems that increase maintenance costs and lower structural integrity of bridge crossings. A stream restoration project is one common mitigation measure used to correct such problems at bridge crossings. Specifically, in an attempt to alleviate aggradation problems with the Old Route 15 Bridge crossing on White Deer Creek, in White Deer, PA, two in-stream structures (rock cross vanes) and several bank stabilization features were installed along with a complete channel redevelopment. The objectives of this research were to characterize the hydraulic and sediment transport processes occurring at the White Deer Creek site, and to investigate, through physical and mathematical modeling, the use of instream restoration structures. The goal is to be able to use the results of this study to prevent aggradation or other sediment related problems in the vicinity of bridges through improved design considerations. Monitoring and modeling indicate that the study site on White Deer Creek is currently unstable, experiencing general channel down-cutting, bank erosion, and several local areas of increased aggradation and degradation of the channel bed. An in-stream structure installed upstream of the Old Route 15 Bridge failed by sediment burial caused by the high sediment load that White Deer Creek is transporting as well as the backwater effects caused by the bridge crossing. The in-stream structure installed downstream of the Old Route 15 Bridge is beginning to fail because of the alignment of the structure with the approach direction of flow from upstream of the restoration structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of British rivers hold stocks of salmon (Salmo salar L.) and sea trout (Salmo trutta L.) and during most of the year some of the adult fish migrate upstream to the head waters where, with the advent of winter, they will eventually spawn. For a variety of reasons, including the generation of power for milling, improving navigation and measuring water flow, man has put obstacles in the way of migratory fish which have added to those already provided by nature in the shape of rapids and waterfalls. While both salmon and sea trout, particularly the former, are capable of spectacular leaps the movement of fish over man-made and natural obstacles can be helped, or even made possible, by the judicious use of fish passes. These are designed to give the fish an easier route over or round an obstacle by allowing it to overcome the water head difference in a series of stages ('pool and traverse' fish pass) or by reducing the water velocity in a sloping channel (Denil fish pass). Salmon and sea trout make their spawning runs at different flow conditions, salmon preferring much higher water flows than sea trout. Hence the design of fish passes requires an understanding of the swimming ability of fish (speed and endurance) and the effect of water temperature on this ability. Also the unique features of each site must be appreciated to enable the pass to be positioned so that its entrance is readily located. As well as salmon and sea trout, rivers often have stocks of coarse fish and eels. Coarse fish migrations are generally local in character and although some obstructions such as weirs may allow downstream passages only, they do not cause a significant problem. Eels, like salmon and sea trout, travel both up and down river during the course of their life histories. However, the climbing power of elvers is legendary and it is not normally necessary to offer them help, while adult silver eels migrate at times of high water flow when downstream movement is comparatively easy: for these reasons neither coarse fish nor eels are considered further. The provision of fish passes is, in many instances, mandatory under the Salmon and Freshwater Fisheries Act 1975. This report is intended for those involved in the planning, siting, construction and operation of fish passes and is written to clarify the hydraulic problems for the biologist and the biological problems for the engineer. It is also intended to explain the criteria by which the design of an individual pass is assessed for Ministerial Approval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water front structures have suffered significant damage in many of the recent earthquakes. These include gravity type quay walls, vertically composite walls, cantilever retaining walls, anchored bulkheads and similar structures. One of the primary causes for the poor performance of these classes of structures is the liquefaction of the foundation soil and in some instances liquefaction of the backfill soil. The liquefaction of the soil in-front of the quay wall tends to cause large lateral displacements and rotation of the wall. Often such gravity walls are placed on rubble mound deposited onto the sea bed.This paper presents finite element analyses of such a problem in which strength degradation of the foundation soil and the backfill material will be modelled using PZ mark III constitutive model. The performance of the wall in terms of its lateral displacement, vertical settlement and/or the rotation suffered by the wall will be presented. In addition, the contours of the horizontal and vertical effective stresses and the excess pore pressure ratio will be presented at different time instants together with hyrdraulic gradients. Immediately after the earthquake, the hydraulic gradients indicate migration of pore water into the region below the wall, suggesting further softening of the foundation soil below the wall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. This inherent buoyancy may cause lightweight structures to float when the soil liquefies. Centrifuge tests have been carried out to study the excess pore pressure generation and dissipation in liquefiable soils. In these tests, near full liquefaction conditions were attained within a few cycles of the earthquake loading. In the case of high hydraulic conductivity sands, significant dissipation could take place even during the earthquake loading which inhibits full liquefaction from occurring. In the case of excess pore pressure generation and dissipation around a floating structure, the cyclic response of the structure may lead to the reduction in excess pore pressure near the face of the structure as compared to the far field. This reduction in excess pore pressure is due to shear-induced dilation and suction pressures arising from extensile stresses at the soil-structure interface. Given the lower excess pore pressure around the structure; the soil around the structure retains a portion of this shear strength which in turn can discourage significant uplift of the underground structure. Copyright © 2012, IGI Global.