988 resultados para Hybrid cycle
Resumo:
The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.
Resumo:
Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.
Resumo:
The cultivation of hybrid rice is a technology that allows for an increase in grain yield of 30% relative to the grain yield of conventional cultivars. However, the main challenge for this technology is related to seed production, which has high production costs and low seed yields. Therefore, agronomic techniques that could enhance flowering synchrony of parental lines in the field are essential for an efficient production system of hybrid rice seeds. The objective of this work was to study the effects of sowing depth, plant density and fertilization with nitrogen or phosphorus as potential techniques to increase the pollen availability in the field and, consequently, the flowering synchrony between parental lines in the production of hybrid rice seeds. The experiments were conducted during two growing seasons in the Central Region of Brazil. All of the experiments were conducted as a randomized complete block in a split plot scheme; however, the experiment with P fertilization had a factorial design. Our research allow inferring that nitrogen fertilization technique applied to the soil or foliar at the time of panicle differentiation does not affect the time of onset of flowering of rice varieties INTA Puitá CL and L106R, which are potential R lines for the production of hybrid rice. Agronomic techniques of variation in sowing depth, seeding rate and the phosphate fertilization affect the time of onset of flowering from 10 to 19 degree-days, which could represent two days in the crop cycle, for the line L106R. Such techniques constitute potential alternatives for use in hybrid rice seed production systems and could be applied in alternated blocks of R lines in the field to obtain longer periods of pollen availability in the field.
Resumo:
This master thesis work is focused on the development of a predictive EHC control function for a diesel plug-in hybrid electric vehicle equipped with a EURO 7 compliant exhaust aftertreatment system (EATS), with the purpose of showing the advantages provided by the implementation of a predictive control strategy with respect to a rule-based one. A preliminary step will be the definition of an accurate powertrain and EATS physical model, starting from already existing and validated applications. Then, a rule-based control strategy managing the torque split between the electric motor (EM) and the internal combustion engine (ICE) will be developed and calibrated, with the main target of limiting tailpipe NOx emission by taking into account EM and ICE operating conditions together with EATS conversion efficiency. The information available from vehicle connectivity will be used to reconstruct the future driving scenario, also referred to as electronic horizon (eHorizon), and in particular to predict ICE first start. Based on this knowledge, an EATS pre-heating phase can be planned to avoid low pollutant conversion efficiencies, thus preventing high NOx emission due to engine cold start. Consequently, the final NOx emission over the complete driving cycle will be strongly reduced, allowing to comply with the limits potentially set by the incoming EURO 7 regulation. Moreover, given the same NOx emission target, the gain achieved thanks to the implementation of an EHC predictive control function will allow to consider a simplified EATS layout, thus reducing the related manufacturing cost. The promising results achieved in terms of NOx emission reduction show the effectiveness of the application of a predictive control strategy focused on EATS thermal management and highlight the potential of a complete integration and parallel development of involved vehicle physical systems, control software and connectivity data management.
Resumo:
Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of global warming. Recently, several metropolitan cities introduced Zero-Emissions Zones where the use of the Internal Combustion Engine is forbidden to reduce localized pollutants emissions. This is particularly problematic for Plug-in Hybrid Electric Vehicles, which usually work in depleting mode. In order to address these issues, the present thesis presents a viable solution by exploiting vehicular connectivity to retrieve navigation data of the urban event along a selected route. The battery energy needed, in the form of a minimum State of Charge (SoC), is calculated by a Speed Profile Prediction algorithm and a Backward Vehicle Model. That value is then fed to both a Rule-Based Strategy, developed specifically for this application, and an Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). The effectiveness of this approach has been tested with a Connected Hardware-in-the-Loop (C-HiL) on a driving cycle measured on-road, stimulating the predictions with multiple re-routings. However, even if hybrid electric vehicles have been recognized as a valid solution in response to increasingly tight regulations, the reduced engine load and the repeated engine starts and stops may reduce substantially the temperature of the exhaust after-treatment system (EATS), leading to relevant issues related to pollutant emission control. In this context, electrically heated catalysts (EHCs) represent a promising solution to ensure high pollutant conversion efficiency without affecting engine efficiency and performance. This work aims at studying the advantages provided by the introduction of a predictive EHC control function for a light-duty Diesel plug-in hybrid electric vehicle (PHEV) equipped with a Euro 7-oriented EATS. Based on the knowledge of future driving scenarios provided by vehicular connectivity, engine first start can be predicted and therefore an EATS pre-heating phase can be planned.
Resumo:
My Ph.D. thesis was dedicated to the exploration of different paths to convert sunlight into the shape of chemical bonds, by the formation of solar fuels. During the past three years, I have focused my research on two of these, namely molecular hydrogen H2 and the reduced nicotinamide adenine dinucleotide enzyme cofactor NAD(P)H. The first could become the ideal energy carrier for a truly clean energy system; it currently represents the best chance to liberate humanity from its dependence on fossil fuels. To address this, I studied different systems which can achieve proton reduction upon light absorption. More specifically, part of my work was aimed to the development of a cost-effective and stable catalyst in combination with a well-known photochemical cycle. To this extent, I worked on transition metal oxides which, as demonstrated in this work, have been identified as promising H2 evolution catalysts, showing excellent activity, stability, and previously unreported versatility. Another branch of my work on hydrogen production dealt with the use of a new class of polymeric semiconductor materials to absorb light and convert it into H2. The second solar fuel mentioned above is a key component of the most powerful methods for chemical synthesis: enzyme catalysis. The high cost of the reduced forms prohibits large-scale utilization, so artificial photosynthetic approaches for regenerating it are being intensively studied. The first system I developed exploits the tremendous reducing properties of a scarcely known ruthenium complex which is able to reduce NAD+. Lastly, I sought to revert the classical role of the sacrificial electron donor to an active component of the system and, to boost the process, I build up an autonomous microfluidic system able to generate highly reproducible NAD(P)H amount, demonstrating the superior performance of microfluidic reactors over batch and representing another successful photochemical NAD(P)H regeneration system.
Resumo:
Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.
Resumo:
Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure.
Resumo:
The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.
Resumo:
Schistosomiasis is a common tropical disease caused by Schistosoma species Schistosomiasis' pathogenesis is known to vary according to the worms' strain. Moreover, high parasitical virulence is directly related to eggs release and granulomatous inflammation in the host's organs. This virulence might be influenced by different classes of molecules, such as lipids. Therefore, better understanding of the metabolic profile of these organisms is necessary, especially for an increased potential of unraveling strain virulence mechanisms and resistance to existing treatments. In this report, direct-infusion electrospray high-resolution mass spectrometry (ESI(+)-HRMS) along with the lipidomic platform were employed to rapidly characterize and differentiate two Brazilian S. mansoni strains (BH and SE) in three stages of their life cycle: eggs, miracidia and cercariae, with samples from experimental animals (Swiss/SPF mice). Furthermore, urine samples of the infected and uninfected mice were analyzed to assess the possibility of direct diagnosis. All samples were differentiated using multivariate data analysis, PCA, which helped electing markers from distinct lipid classes; phospholipids, diacylglycerols and triacylglycerols, for example, clearly presented different intensities in some stages and strains, as well as in urine samples. This indicates that biochemical characterization of S. mansoni may help narrowing-down the investigation of new therapeutic targets according to strain composition and aggressiveness of disease. Interestingly, lipid profile of infected mice urine varies when compared to control samples, indicating that direct diagnosis of schistosomiasis from urine may be feasible.
Resumo:
The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.
Resumo:
The role of key cell cycle regulation genes such as, CDKN1B, CDKN2A, CDKN2B, and CDKN2C in sporadic medullary thyroid carcinoma (s-MTC) is still largely unknown. In order to evaluate the influence of inherited polymorphisms of these genes on the pathogenesis of s-MTC, we used TaqMan SNP genotyping to examine 45 s-MTC patients carefully matched with 98 controls. A multivariate logistic regression analysis demonstrated that CDKN1B and CDKN2A genes were related to s-MTC susceptibility. The rs2066827*GT+GG CDKN1B genotype was more frequent in s-MTC patients (62.22%) than in controls (40.21%), increasing the susceptibility to s-MTC (OR=2.47; 95% CI=1.048-5.833; P=0.038). By contrast, the rs11515*CG+GG of CDKN2A gene was more frequent in the controls (32.65%) than in patients (15.56%), reducing the risk for s-MTC (OR=0.174; 95% CI=0.048-0.627; P=0.0075). A stepwise regression analysis indicated that two genotypes together could explain 11% of the total s-MTC risk. In addition, a relationship was found between disease progression and the presence of alterations in the CDKN1A (rs1801270), CDKN2C (rs12885), and CDKN2B (rs1063192) genes. WT rs1801270 CDKN1A patients presented extrathyroidal tumor extension more frequently (92%) than polymorphic CDKN1A rs1801270 patients (50%; P=0.0376). Patients with the WT CDKN2C gene (rs12885) presented larger tumors (2.9±1.8 cm) than polymorphic patients (1.5±0.7 cm; P=0.0324). On the other hand, patients with the polymorphic CDKN2B gene (rs1063192) presented distant metastases (36.3%; P=0.0261). In summary, we demonstrated that CDKN1B and CDKN2A genes are associated with susceptibility, whereas the inherited genetic profile of CDKN1A, CDKN2B, and CDKN2C is associated with aggressive features of tumors. This study suggests that profiling cell cycle genes may help define the risk and characterize s-MTC aggressiveness.
Resumo:
Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2μM). Nek5 silenced cells as well as cells expressing a kinase dead version of Nek5, displayed an increase in ROS formation after 4h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells.
Resumo:
OBJECTIVE: To analyze the amount of glycosaminoglycans in the uterine cervix during each phase of the rat estrous cycle. DESIGN: Based on vaginal smears, forty female, regularly cycling rats were divided into four groups (n = 10 for each group): GI - proestrous, GII - estrous, GIII - metaestrous and GIV - diestrous. Animals were sacrificed at each phase of the cycle, and the cervix was immediately removed and submitted to biochemical extraction and determination of sulfated glycosaminoglycans and hyaluronic acid. The results were analyzed by ANOVA followed by the Bonferroni post-hoc test. RESULTS: The uterine cervix had the highest amount of total sulfated glycosaminoglycans and dermatan sulfate during the estrous phase (8.90 ± 0.55 mg/g of cetonic extract, p<0.001; and 8.86 ± 0.57 mg/g of cetonic extract, p<0.001). In addition, there was more heparan sulfate at the cervix during the proestrous phase (0.185 ± 0.03 mg/g of cetonic extract) than during any other phase (p<0.001). There were no significant changes in the concentration of hyaluronic acid in the uterine cervix during the estrous cycle. CONCLUSION: Our data suggest that the amount of total sulfated glycosaminoglycans may be influenced by hormonal fluctuations related to the estrous cycle, with dermatan sulfate and heparan sulfate being the glycosaminoglycans most sensitive to hormonal change.
Resumo:
This paper addresses the capacitated lot sizing problem (CLSP) with a single stage composed of multiple plants, items and periods with setup carry-over among the periods. The CLSP is well studied and many heuristics have been proposed to solve it. Nevertheless, few researches explored the multi-plant capacitated lot sizing problem (MPCLSP), which means that few solution methods were proposed to solve it. Furthermore, to our knowledge, no study of the MPCLSP with setup carry-over was found in the literature. This paper presents a mathematical model and a GRASP (Greedy Randomized Adaptive Search Procedure) with path relinking to the MPCLSP with setup carry-over. This solution method is an extension and adaptation of a previously adopted methodology without the setup carry-over. Computational tests showed that the improvement of the setup carry-over is significant in terms of the solution value with a low increase in computational time.