393 resultados para Humpback whale


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compiled by Patricia Ann Skaptason. "This bibliography is designed to bring together literature on the fin whale, published from 1940 through 1970. newspaper articles, legal matgerial (except that by the International Whaling Commission), biochemical studies, juvenile and strictly narrative works have been omitted"

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1948, the U.S.S.R. began a global campaign of illegal whaling that lasted for three decades and, together with the poorly managed “legal” whaling of other nations, seriously depleted whale populations. Although the general story of this whaling has been told and the catch record largely corrected for the Southern Hemisphere, major gaps remain in the North Pacific. Furthermore, little attention has been paid to the details of this system or its economic context. Using interviews with former Soviet whalers and biologists as well as previously unavailable reports and other material in Russian, our objective is to describe how the Soviet whaling industry was structured and how it worked, from the largest scale of state industrial planning down to the daily details of the ways in which whales were caught and processed, and how data sent to the Bureau of International Whaling Statistics were falsified. Soviet whaling began with the factory ship Aleut in 1933, but by 1963 the industry had a truly global reach, with seven factory fleets (some very large). Catches were driven by a state planning system that set annual production targets. The system gave bonuses and honors only when these were met or exceeded, and it frequently increased the following year’s targets to match the previous year’s production; scientific estimates of the sustainability of the resource were largely ignored. Inevitably, this system led to whale populations being rapidly reduced. Furthermore, productivity was measured in gross output (weights of whales caught), regardless of whether carcasses were sound or rotten, or whether much of the animal was unutilized. Whaling fleets employed numerous people, including women (in one case as the captain of a catcher boat). Because of relatively high salaries and the potential for bonuses, positions in the whaling industry were much sought-after. Catching and processing of whales was highly mechanized and became increasingly efficient as the industry gained more experience. In a single day, the largest factory ships could process up to 200 small sperm whales, Physeter macrocephalus; 100 humpback whales, Megaptera novaeangliae; or 30–35 pygmy blue whales, Balaenoptera musculus brevicauda. However, processing of many animals involved nothing more than stripping the carcass of blubber and then discarding the rest. Until 1952, the main product was whale oil; only later was baleen whale meat regularly utilized. Falsified data on catches were routinely submitted to the Bureau of International Whaling Statistics, but the true catch and biological data were preserved for research and administrative purposes. National inspectors were present at most times, but, with occasional exceptions, they worked primarily to assist fulfillment of plan targets and routinely ignored the illegal nature of many catches. In all, during 40 years of whaling in the Antarctic, the U.S.S.R. reported 185,778 whales taken but at least 338,336 were actually killed. Data for the North Pacific are currently incomplete, but from provisional data we estimate that at least 30,000 whales were killed illegally in this ocean. Overall, we judge that, worldwide, the U.S.S.R. killed approximately 180,000 whales illegally and caused a number of population crashes. Finally, we note that Soviet illegal catches continued after 1972 despite the presence of international observers on factory fleets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From 1947 to 1973, the U.S.S.R. conducted a huge campaign of illegal whaling worldwide. We review Soviet catches of humpback whales, Megaptera novaeangliae, in the Southern Ocean during this period, with an emphasis on the International Whaling Commission’s Antarctic Management Areas IV, V, and VI (the principal regions of illegal Soviet whaling on this species, south of Australia and western Oceania). Where possible, we summarize legal and illegal Soviet catches by year, Management Area, and factory fleet, and also include information on takes by other nations. Soviet humpback catches between 1947 and 1973 totaled 48,702 and break down as follows: 649 (Area I), 1,412 (Area II), 921 (Area III), 8,779 (Area IV), 22,569 (Area V), and 7,195 (Area VI), with 7,177 catches not currently assignable to area. In all, at least 72,542 humpback whales were killed by all operations (Soviet plus other nations) after World War II in Areas IV (27,201), V (38,146), and VI (7,195). More than one-third of these (25,474 whales, of which 25,192 came from Areas V and VI) were taken in just two seasons, 1959–60 and 1960–61. The impact of these takes, and of those from Area IV in the late 1950’s, is evident in the sometimes dramatic declines in catches at shore stations in Australia, New Zealand, and at Norfolk Island. When compared to recent estimates of abundance and initial population size, the large removals from Areas IV and V indicate that the populations in these regions remain well below pre-exploitation levels despite reported strong growth rates off eastern and western Australia. Populations in many areas of Oceania continue to be small, indicating that the catches from Area VI and eastern Area V had long-term impacts on recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In late October of 1966, an imposing ship steamed quietly through the placid waters of the Suez Canal. Clad in drab industrial gray, and flying a Soviet hammer and sickle flag at her masthead, the vessel was accompanied by a large fleet of smaller craft. Any observer able to decipher Cyrillic script could have read, in rusting metallic letters on her bow, the name Sovetskaya Ukraina. The more experienced would perhaps have identified her as a whaling factory ship, traveling with her attendant fleet of catcher boats and scouting vessels on a transit that would take them south into the Red Sea and beyond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The history of whaling in the Gulf of Maine was reviewed primarily to estimate removals of humpback whales, Megaptera novaeangliae, especially during the 19th century. In the decades from 1800 to 1860, whaling effort consisted of a few localized, small-scale, shore-based enterprises on the coast of Maine and Cape Cod, Mass. Provincetown and Nantucket schooners occasionally conducted short cruises for humpback whales in New England waters. With the development of bomb-lance technology at mid century, the ease of killing humpback whales and fin whales, Balaenoptera physalus, increased. As a result, by the 1870’s there was considerable local interest in hunting rorquals (baleen whales in the family Balaenopteridae, which include the humpback and fin whales) in the Gulf of Maine. A few schooners were specially outfitted to take rorquals in the late 1870’s and 1880’s although their combined annual take was probably no more than a few tens of whales. Also in about 1880, fishing steamers began to be used to hunt whales in the Gulf of Maine. This steamer fishery grew to include about five vessels regularly engaged in whaling by the mid 1880’s but dwindled to only one vessel by the end of the decade. Fin whales constituted at least half of the catch, which exceeded 100 animals in some years. In the late 1880’s and thereafter, few whales were taken by whaling vessels in the Gulf of Maine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bowhead whale, Balaena mysticetus, is currently listed as endangered under the Endangered Species Act of 1973 and as depleted under the Marine Mammal Protection Act of 1972. Literature on the species is updated since 1984, and elements are reviewed that may contribute to the evaluation of the status of bowhead whale stocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the summer distribution of marine mammals off the northern Washington coast based on six ship transect surveys conducted between 1995 and 2002, primarily from the NOAA ship McArthur. Additionally, small boat surveys were conducted in the same region between 1989 and 2002 to gather photographic identification data on humpback whales (Megaptera novaeangliae) and killer whales (Orcinus orca) to examine movements and population structure. In the six years of ship survey effort, 706 sightings of 15 marine mammal species were made. Humpback whales were the most common large cetacean species and were seen every year and a total of 232 sightings of 402 animals were recorded during ship surveys. Highest numbers were observed in 2002, when there were 79 sightings of 139 whales. Line-transect estimates for humpback whales indicated that about 100 humpback whales inhabited these waters each year between 1995 and 2000; in 2002, however, the estimate was 562 (CV= 0.21) whales. A total of 191 unique individuals were identified photographically and mark recapture estimates also indicated that the number of animals increased from under 100 to over 200 from 1995 to 2002. There was only limited interchange of humpback whales between this area and feeding areas off Oregon and California. Killer whales were also seen on every ship survey and represented all known ecotypes of the Pacific Northwest, including southern and northern residents, transients, and offshore-type killer whales. Dall’s porpoise (Phocoenoides dalli) were the most frequently sighted small cetacean; abundance was estimated at 181−291 individuals, except for 2002 when we observed dramatically higher numbers (876, CV= 0.30). Northern fur seals (Callorhinus ursinus) and elephant seals (Mirounga angustirostris) were the most common pinnipeds observed. There were clear habitat differences related to distance offshore and water depth for different species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salinity, temperature and pressure are parameters which govern the oceanographic state of a marine water body and together they make up density of seawater. In this contribution we will focus our interest on one of these parameters, the salinity: accuracy in relation to different purposes as well as observation technique and instrumentation. We will also discuss the definition of salinity. For example most of the Indian Ocean waters are within the salinity range from 34.60-34.80, which emphasize the importance of careful observations and clear definitions of salinity, in such a way that it is possible to define water masses and predict their movements. In coastal waters the salinity usually features much larger variation in time and space and thus less accuracy is sometimes needed. Salinity has been measured and defined in several ways over the past century. While early measurements were based on the amount of salt in a sea water sample, today the salinity of seawater is most often determined from its conductivity. As conductivity is a function of salinity and temperature, determination involves also measurement of the density of seawater is now more precisely estimated and thus the temperature. As a result of this method the Practical Salinity Scale (PSS) was developed. The best determination of salinity from conductivity and the temperature measurements gives salinity with resolution of 0.001 psu, while the accuracy of titration method was about ± 0.02‰. Because of that, even calculation of movements in the ocean is also improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yangtze finless porpoises were surveyed by using simultaneous visual and acoustical methods from 6 November to 13 December 2006. Two research vessels towed stereo acoustic data loggers, which were used to store the intensity and sound source direction of the high frequency sonar signals produced by finless porpoises at detection ranges up to 300 m on each side of the vessel. Simple stereo beam forming allowed the separation of distinct biosonar sound source, which enabled us to count the number of vocalizing porpoises. Acoustically, 204 porpoises were detected from one vessel and 199 from the other vessel in the same section of the Yangtze River. Visually, 163 and 162 porpoises were detected from two vessels within 300 m of the vessel track. The calculated detection probability using acoustic method was approximately twice that for visual detection for each vessel. The difference in detection probabilities between the two methods was caused by the large number of single individuals that were missed by visual observers. However, the sizes of large groups were underestimated by using the acoustic methods. Acoustic and visual observations complemented each other in the accurate detection of porpoises. The use of simple, relatively inexpensive acoustic monitoring systems should enhance population surveys of free-ranging, echolocating odontocetes. (C) 2008 Acoustical Society of America.