981 resultados para Human infections
Resumo:
During the period 1980-1986, we captured triatomine bugs and mammalian reservoir hosts from sylvatic and domestic situations in different municipalities of the State of Minas Gerais. Trypanosoma cruzi was isolated from captured bugs, mammals and patients. After cultivation in LIT medium, the electrophoretic enzyme profiles were determined. We obtained atotal of 32 parasite isolates from regions with active domestic transmission, and 24 isolates form areas under control. For the first areas the results suggest introduction of T. cruzi from sylvatic habitats, through incursion of infected opossums and/or sylvatic T. sordida, which appears to have given rise to at least one acute human infection. Of particular interest is the finding of sylvatic opossums and a T. sordida nymph infected with ZB, that could indicate return of parasites from chronic human infections to sylvatic transmission cycles. For the areas under control we also interpret the results as interaction between sylvatic and domestic cycles of transmission, here through the invasion of houses by bugs carrying the Z1 zymodeme from the sylvatic environment. The Multivariate Correspondence Analysis gives a spatial description between the different parasite isolates and confirms the existence of a bridge in the opposite direction in the region with active vectorial transmission including the exporting of Z2 through the peridomestic environment into the sylvatic cycle. For the others areas this bridge corresponds especially to Panstrongylus megistus, importing Z1 into the domestic environment.
Resumo:
In this survey we examined 87 domestic animal stool samples in order to detect the possible presence of microsporidia in animals in close contact with humans in Galicia (NW, Spain). The detection of Enterocytozoon bieneusi spores was confirmed in faecal samples from two dogs and one goat by polymerase chain reaction. None of the positive samples for microsporidia in the staining method were amplified with species-specific primers for Encephalitozoon intestinalis, E. hellem and E. cuniculi. Four rabbits faecal samples reacted with anti-E. cuniculi serum. Our results could indicate the importance of domestic animals as zoonotic reservoirs of microsporidial human infections.
Resumo:
Although leishmaniasis is regarded as a significant health problem in Ecuador by the Ministry of Health, and the incidence has increased over the last years, an official map on the geographic distribution of disease and sand fly vectors or a control strategy do not exist yet. This article reviews the current situation based on published information to improve our knowledge and understand the epidemiological situation of leishmaniasis in Ecuador in order to help future research and to develop a national control strategy. The disease is endemic in most provinces throughout Pacific coastal region, Amazonian lowlands, and some inter-Andean valleys with a total 21,805 cases reported during 1990-2003. Whereas cutaneous leishmaniasis (CL) is found throughout Ecuador, mucocutaneous leishmaniasis (MCL) appears to be restricted to the Amazon region; one, parasitologically unconfirmed case of visceral form was reported in 1949. Most human infections are caused by Leishmania (Viannia) spp., which is distributed in the subtropical and tropical lowlands; infections due to L. (Leishmania) spp. are found in the Andean highlands and in the Pacific lowlands as well. The proven vectors are Lutzomyia trapidoi and Lu. ayacuchensis. Canis familiaris, Sciurus vulgaris, Potos flavus, and Tamandua tetradactyla have been found infected with Leishmania spp. It is estimated that around 3000-4500 people may be infected every year, and that 3.1 to 4.5 millions people are estimated to be at risk of contracting leishmaniasis.
Resumo:
An historical review is given of American visceral leishmaniasis (AVL), with particular reference to the eco-epidemiology of the disease in Brazil. Following the first records of AVL in this country, in 1934, the sandfly Lutzomyia longipalpis (Lutz and Neiva, 1912) was incriminated as the principal vector. It is now generally accepted, however, that there exist a number of cryptic species under the name of Lu. longipalpis s.l. and that variations in the quantity of the vasodilatory peptide maxadilan in the saliva of flies from different populations of Lu. longipalpis s.l., may account for the variable clinical manifestations of AVL seen in different geographic regions. Distribution of AVL has been shown to extend throughout most of South and Central America, with the domestic dog serving as the principal reservoir of infection for man. However, while one hypothesis suggests that the causative parasite is Leishmania infantum, imported from Europe with the Portuguese and Spanish colonists, the demonstration of a high rate of benign, inapparent infection in foxes in Amazonian Brazil raised an opposing suggestion that the parasite is indigenous to the Americas. Recent reports of similar infections in native marsupials, and possibly rodents, tend to support this view, particularly as Lu. longipalpis is primordially a silvatic sandfly. Although effective control measures in foci of the disease will diminish the number of canine and human infections, the presence of such an enzootic in a variety of native animals will render the total eradication of AVL unlikely.
Resumo:
A total of 283 Salmonella Typhimurium strains isolated from cases of human infections and non human sources, were examined for antimicrobial susceptibilityand the incidence of resistance was 38% and multiple resistance (to three or more antimicrobials) was 15%. All 43 multidrug-resistant strains (MDR) and 13 susceptible ones were characterized by phage typing and pulsed- field gel electrophoresis (PFGE). The strains encompassed 14 definitive phage types (DT), three were untypable (UT), and 18 atypicals or reaction does not conform (RDNC), which belonged to 21 PFGE patterns, A1-A21. The predominant phage types were DT49, DT193, and RDNC and two strains belonging to DT 104 and 104b were also identified. The most commum PFGE patterns were A1 and A8. Analysis by PFGE and phage typing demonstrated that the most of the MDR were multiclonal and association among multiresistance, phage typing, and PFGE patterns was not so significant.
Resumo:
Human infection with the protozoa Trypanosoma cruzi extends through North, Central, and South America, affecting 21 countries. Most human infections in the Western Hemisphere occur through contact with infected bloodsucking insects of the triatomine species. As T. cruzi can be detected in the blood of untreated infected individuals, decades after infection took place; the infection can be also transmitted through blood transfusion and organ transplant, which is considered the second most common mode of transmission for T. cruzi. The third mode of transmission is congenital infection. Economic hardship, political problems, or both, have spurred migration from Chagas endemic countries to developed countries. The main destination of this immigration is Australia, Canada, Spain, and the United States. In fact, human infection through blood or organ transplantation, as well as confirmed or potential cases of congenital infections has been described in Spain and in the United States. Estimates reported here indicates that in Australia in 2005-2006, 1067 of the 65,255 Latin American immigrants (16 per 1000) may be infected with T. cruzi, and in Canada, in 2001, 1218 of the 131,135 immigrants (9 per 1000) whose country of origin was identified may have been also infected. In Spain, a magnet for Latin American immigrants since the 2000, 5125 of 241,866 legal immigrants in 2003 (25 per 1000), could be infected. In the United States, 56,028 to 357,205 of the 7,20 million, legal immigrants (8 to 50 per 1000), depending on the scenario, from the period 1981-2005 may be infected with T. cruzi. On the other hand, 33,193 to 336,097 of the estimated 5,6 million undocumented immigrants in 2000 (6 to 59 per 1000) could be infected. Non endemic countries receiving immigrants from the endemic ones should develop policies to protect organ recipients from T. cruzi infection, prevent tainting the blood supply with T. cruzi, and implement secondary prevention of congenital Chagas disease.
Resumo:
Angiostrongylus costaricensis has a broad geographic distribution spanning from North to South America and the infections of vertebrates with this nematode can result in abdominal complications. Human infections are diagnosed by histological or serological methods because the isolation of larvae from feces is not feasible, as most parasites become trapped in intestinal tissues due to intense eosinophilic inflammation. Because A. costaricensis is difficult to maintain in the laboratory, an immunodiagnostic IgG enzyme-linked immunosorbent assay (ELISA) using antigens from the congeneric Angiostrongylus cantonensis species was evaluated against a panel of serum samples from patients who were histologically diagnosed with A. costaricensis infections. Sera from uninfected individuals and individuals infected with other parasites were used as controls. The sensitivity and specificity of the assay were estimated at 88.4% and 78.7%, respectively. Because the use of purified or cloned antigens has not been established as a reliable diagnostic tool, the use of heterologous antigens may provide a viable alternative for the development of an ELISA-based immunodetection system for the diagnosis of abdominal angiostrongyliasis.
Resumo:
A review of national and international publications on paragonimiasis in Ecuador, epidemiological records from the Ministry of Public Health and unpublished research data was conducted to summarise the current status of the parasite/disease. The purpose of the review is to educate physicians, policy-makers and health providers on the status of the disease and to stimulate scientific investigators to conduct further research. Paragonimiasis was first diagnosed in Ecuador 94 years ago and it is endemic to both tropical and subtropical regions in 19 of 24 provinces in the Pacific Coast and Amazon regions. Paragonimus mexicanus is the only known species in the country, with the mollusc Aroapyrgus colombiensis and the crabs Moreirocarcinus emarginatus, Hypolobocera chilensis and Hypolobocera aequatorialis being the primary and secondary intermediate hosts, respectively. Recent studies found P. mexicanus metacercariae in Trichodactylus faxoni crabs of the northern Amazon. Chronic pulmonary paragonimiasis is commonly misdiagnosed and treated as tuberculosis and although studies have demonstrated the efficacy of praziquantel and triclabendazole for the treatment of human infections, neither drug is available in Ecuador. Official data recorded from 1978-2007 indicate an annual incidence of 85.5 cases throughout the 19 provinces, with an estimated 17.2% of the population at risk of infection. There are no current data on the incidence/prevalence of infection, nor is there a national control programme.
Resumo:
Trypanosoma cruziis the aetiological agent of Chagas disease, which affects approximately eight million people in the Americas. This parasite exhibits genetic variability, with at least six discrete typing units broadly distributed in the American continent. T. cruziI (TcI) shows remarkable genetic diversity; a genotype linked to human infections and a domestic cycle of transmission have recently been identified, hence, this strain was named TcIDom. The aim of this work was to describe the spatiotemporal distribution of TcI subpopulations across humans, insect vectors and mammalian reservoirs in Colombia by means of molecular typing targeting the spliced leader intergenic region of mini-exon gene. We analysed 101 TcI isolates and observed a distribution of sylvatic TcI in 70% and TcIDom in 30%. In humans, the ratio was sylvatic TcI in 60% and TcIDom in 40%. In mammal reservoirs, the distribution corresponded to sylvatic TcI in 96% and TcIDom in 4%. Among insect vectors, sylvatic TcI was observed in 48% and TcIDom in 52%. In conclusion, the circulation of TcIDom is emerging in Colombia and this genotype is still adapting to the domestic cycle of transmission. The epidemiological and clinical implications of these findings are discussed herein.
Resumo:
The development of dysfunctional or exhausted T cells is characteristic of immune responses to chronic viral infections and cancer. Exhausted T cells are defined by reduced effector function, sustained upregulation of multiple inhibitory receptors, an altered transcriptional program and perturbations of normal memory development and homeostasis. This review focuses on (a) illustrating milestone discoveries that led to our present understanding of T cell exhaustion, (b) summarizing recent developments in the field, and (c) identifying new challenges for translational research. Exhausted T cells are now recognized as key therapeutic targets in human infections and cancer. Much of our knowledge of the clinically relevant process of exhaustion derives from studies in the mouse model of Lymphocytic choriomeningitis virus (LCMV) infection. Studies using this model have formed the foundation for our understanding of human T cell memory and exhaustion. We will use this example to discuss recent advances in our understanding of T cell exhaustion and illustrate the value of integrated mouse and human studies and will emphasize the benefits of bi-directional mouse-to-human and human-to-mouse research approaches.
Resumo:
Antimicrobial Resistance in Campylobacter jejuni and Campylobacter coli Campylobacters are a common cause of bacterial gastroenteritis worldwide, with Campylobacter jejuni and C. coli being the most common species isolated in human infections. If antimicrobial treatment is required, the drugs of choice at the moment are the macrolides and fluoroquinolones. In this thesis, the in vitro resistance profiles of the C. jejuni and C. coli strains were evaluated with emphasis on multidrug resistance. The aim was also to evaluate the different resistance mechanisms against the macrolides. Further, the disk diffusion method was compared to agar dilution method and its repeatability was evaluated, since it has been widely used for the susceptibility testing of campylobacters. The results of the present study showed that resistance to the fluoroquinolones is common in strains isolated from Finnish patients, but resistance to the macrolides is still rare. Multidrug resistance was associated with resistance to both ciprofloxacin and erythromycin. Among the available per oral drugs, least resistance was observed to coamoxiclav There was no resistance to the carbapenems. Sitafloxacin and tigecycline were in vitro highly effective towards Campylobacter species. A point mutation A2059G of the 23S rRNA gene was the main mechanism behind the macrolide resistance, whereas the efflux pumps did not seem to play an important role when a strain had A2059G mutation. A five amino acids insertion, which has not been described previously, in the ribosomal protein L22 of one highly-resistant C. jejuni strain without mutation in the 23S rRNA gene was also detected. Concerning the disk diffusion method, there was variation in the repeatability In conclusion, macrolides still appear to be the first-choice alternative for suspected Campylobacter enteritis. The in vitro susceptibilities found suggest that co-amoxiclav might be a candidate for clinical trials on campylobacteriosis, but in life-threatening situations, a carbapenem may be the drug of choice. More studies are needed on whether the disk diffusion test method could be improved or whether all susceptibilities of campylobacters should be done using a MIC based method.
Resumo:
Les infections à Salmonella Typhimurium constituent un problème de taille pour l’industrie porcine et la santé publique car cet animal est un réservoir pour les infections chez l’homme. De plus, on observe, chez des souches appartenant au lysotype (LT) 104, des résistances multiples aux antimicrobiens associées à des septicémies chez les porcs en engraissement, ce qui peut contribuer à la contamination des carcasses. Il faut donc contrôler l’infection au niveau du troupeau. Pour ce faire, il importe donc de mieux caractériser ces souches, comprendre la pathogénie de l’infection et identifier des facteurs de virulence. L’objectif principal de cette étude était de caractériser des isolats de S. Typhimurium provenant de porcs septicémiques et de les comparer avec ceux de porcs sains. Une banque d’isolats provenant de porcs septicémiques (ASC) et de porcs sains à l’abattoir (SSC) était constituée. Le lysotype des isolats a été identifié et ceux-ci ont été caractérisés selon le profil de résistance aux antimicrobiens, le SDS-PAGE et l’immunobuvardage et le PFGE. Chez les isolats ASC, LT 104 représentait 36.4% des isolats et chez les isolats SSC la proportion était de 51.5%. Les isolats pouvaient être résistants jusqu’à douze antimicrobiens, peu importe leur origine. Il n’a toutefois pas été possible d’associer une protéine spécifique au groupe d’isolats ASC. Parmi les souches LT 104, plusieurs groupes génétiques ont été identifiés. Les différentes étapes de la pathogénie de Salmonella ont ensuite été évaluées, dont l’adhésion et l’invasion des isolats des deux banques sur des cellules intestinales humaines. Nos résultats ont démontré que les isolats ASC avaient un pouvoir accru d’invasion comparés aux isolats SSC (P=0.003). Pour un sous-groupe d’isolats sélectionnés selon leur taux d’invasion, des tests de phagocytose, d’apoptose et d’adhésion au mucus intestinal ont été effectués en utilisant la cytométrie en flux. La survie des bactéries après la phagocytose a aussi été évaluée et la méthode MATS a été utilisée pour évaluer l'adhésion aux solvants. Les pourcentages de phagocytose chez les isolats SSC par les monocytes porcins étaient plus élevés que chez les isolats ASC à 15 minutes (P=0.02). Nous n’avons trouvé aucune différence significative pour les autres méthodes utilisées. Nous avons ensuite comparé le génome d’un isolat ASC (#36) à celui d’un isolat SSC (#1) par le SSH pour identifier des facteurs de virulence potentiels. Des clones correspondant à des gènes retrouvés sur le chromosome ainsi que sur des plasmides ont été identifiés. Ces résultats nous ont dirigés vers l’analyse des profils plasmidiques de tous les isolats. Les différents profils étaient retrouvés autant chez les isolats ASC que chez les isolats SSC. Deux profils (PL14 et PL20) étaient observés plus fréquemment chez les isolats LT 104 que chez les isolats d’autres lysotypes (P=0.01 et P=0.01, respectivement). Le séquençage d’un des plasmides de l’isolat ASC, démontrait la présence d’informations génétiques codant pour la réplication et une bêta-galactosidase-α. Il serait intéressant de préciser le rôle exact de ces gènes dans l’infection. Nos travaux suggèrent que les isolats de S. Typhimurium provenant de porcs septicémiques se distinguent par un pouvoir d’invasion accru ainsi que par des taux de phagocytose plus faibles dans les phases initiales de l’infection. Cette étude aura donc permis d’accroître les connaissances sur la pathogénie des infections à S. Typhimurium chez le porc.
Resumo:
Aeromonas spp. are ubiquitous aquatic organisms, associated with multitude of diseases in several species of animals, including fishes and humans. In the present study, water samples from two ornamental fish culture systems were analyzed for the presence of Aeromonas. Nutrient agar was used for Aeromonas isolation, and colonies (60 No) were identified through biochemical characterization. Seven clusters could be generated based on phenotypic characters, analyzed by the programme NTSYSpc, Version 2.02i, and identified as: Aeromonas caviae (33.3%), A. jandaei (38.3%) and A. veronii biovar sobria (28.3%). The strains isolated produced highly active hydrolytic enzymes, haemolytic activity and slime formation in varying proportions. The isolates were also tested for the enterotoxin genes (act, alt and ast), haemolytic toxins (hlyA and aerA), involved in type 3 secretion system (TTSS: ascV, aexT, aopP, aopO, ascF–ascG, and aopH), and glycerophospholipid-cholesterol acyltransferase (gcat). All isolates were found to be associated with at least one virulent gene. Moreover, they were resistant to frequently used antibiotics for human infections. The study demonstrates the pathogenic potential of Aeromonas, associated with ornamental fish culture systems suggesting the emerging threat to public health
Resumo:
Aims: To estimate the proportions of farms on which broilers, turkeys and pigs were shedding fluoroquinolone (FQ)-resistant Escherichia coli or Campylobacter spp. near to slaughter. Methods and Results: Freshly voided faeces were collected on 89 poultry and 108 pig farms and cultured with media containing 1.0 mg l(-1) ciprofloxacin. Studies demonstrated the specificity of this sensitive method, and both poultry and pig sampling yielded FQ-resistant E. coli on 60% of farms. FQ-resistant Campylobacter spp. were found on around 22% of poultry and 75% of pig farms. The majority of resistant isolates of Campylobacter (89%) and E. coli (96%) tested had minimum inhibitory concentrations for ciprofloxacin of >= 8 mg l(-1). The proportion of resistant E. coli and Campylobacter organisms within samples varied widely. Conclusions: FQ resistance is commonly present among two enteric bacterial genera prevalent on pig and poultry farms, although the low proportion of resistant organisms in many cases requires a sensitive detection technique. Significance and Impact of the Study: FQ-resistant bacteria with zoonotic potential appear to be present on a high proportion of UK pig and poultry farms. The risk this poses to consumers relative to other causes of FQ-resistant human infections remains to be clarified.
Resumo:
The putative virulence and antimicrobial resistance gene contents of extended spectrum β-lactamase (ESBL)-positive E. coli (n=629) isolated between 2005 and 2009 from humans, animals and animal food products in Germany, The Netherlands and the UK were compared using a microarray approach to test the suitability of this approach with regard to determining their similarities. A selection of isolates (n=313) were also analysed by multilocus sequence typing (MLST). Isolates harbouring blaCTX-M-group-1 dominated (66%, n=418) and originated from both animals and cases of human infections in all three countries; 23% (n=144) of all isolates contained both blaCTX-M-group-1 and blaOXA-1-like genes, predominantly from humans (n=127) and UK cattle (n=15). The antimicrobial resistance and virulence gene profiles of this collection of isolates were highly diverse. A substantial number of human isolates (32%, n=87) did not share more than 40% similarity (based on the Jaccard coefficient) with animal isolates. A further 43% of human isolates from the three countries (n=117) were at least 40% similar to each other and to five isolates from UK cattle and one each from Dutch chicken meat and a German dog; the members of this group usually harboured genes such as mph(A), mrx, aac(6’)-Ib, catB3, blaOXA-1-like and blaCTX-M-group-1. forty-four per cent of the MLST-typed isolates in this group belonged to ST131 (n=18) and 22% to ST405 (n=9), all from humans. Among animal isolates subjected to MLST (n=258), only 1.2% (n=3) were more than 70% similar to human isolates in gene profiles and shared the same MLST clonal complex with the corresponding human isolates. The results suggest that minimising human-to-human transmission is essential to control the spread of ESBL-positive E. coli in humans.