936 resultados para Human engineering.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Breast cancer in its advanced stage has a high predilection to the skeleton. Currently, treatment options of breast cancer-related bone metastasis are restricted to only palliative therapeutic modalities. This is due to the fact that mechanisms regarding the breast cancer celI-bone colonisation as well as the interactions of breast cancer cells with the bone microenvironment are not fully understood, yet. This might be explained through a lack of appropriate in vitro and in vivo models that are currently addressing the above mentioned issue. Hence the hypothesis that the translation of a bone tissue engineering platform could lead to improved and more physiological in vitro and in vivo model systems in order to investigate breast cancer related bone colonisation was embraced in this PhD thesis. Therefore the first objective was to develop an in vitro model system that mimics human mineralised bone matrix to the highest possible extent to examine the specific biological question, how the human bone matrix influences breast cancer cell behaviour. Thus, primary human osteoblasts were isolated from human bone and cultured under osteogenic conditions. Upon ammonium hydroxide treatment, a cell-free intact mineralised human bone matrix was left behind. Analyses revealed a similar protein and mineral composition of the decellularised osteoblast matrix to human bone. Seeding of a panel of breast cancer cells onto the bone mimicking matrix as well as reference substrates like standard tissue culture plastic and collagen coated tissue culture plastic revealed substrate specific differences of cellular behaviour. Analyses of attachment, alignment, migration, proliferation, invasion, as well as downstream signalling pathways showed that these cellular properties were influenced through the osteoblast matrix. The second objective of this PhD project was the development of a human ectopic bone model in NOD/SCID mice using medical grade polycaprolactone tricalcium phosphate (mPCL-TCP) scaffold. Human osteoblasts and mesenchymal stem cells were seeded onto an mPCL-TCP scaffold, fabricated using a fused deposition modelling technique. After subcutaneous implantation in conjunction with the bone morphogenetic protein 7, limited bone formation was observed due to the mechanical properties of the applied scaffold and restricted integration into the soft tissue of flank of NOD/SCID mice. Thus, a different scaffold fabrication technique was chosen using the same polymer. Electrospun tubular scaffolds were seeded with human osteoblasts, as they showed previously the highest amount of bone formation and implanted into the flanks of NOD/SCID mice. Ectopic bone formation with sufficient vascularisation could be observed. After implantation of breast cancer cells using a polyethylene glycol hydrogel in close proximity to the newly formed bone, macroscopic communication between the newly formed bone and the tumour could be observed. Taken together, this PhD project showed that bone tissue engineering platforms could be used to develop an in vitro and in vivo model system to study cancer cell colonisation in the bone microenvironment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mammographic density (MD) is a strong heritable risk factor for breast cancer, and may decrease with increasing parity. However, the biomolecular basis for MD-associated breast cancer remains unclear, and systemic hormonal effects on MD-associated risk is poorly understood. This study assessed the effect of murine peripartum states on high and low MD tissue maintained in a xenograft model of human MD. Method High and low MD human breast tissues were precisely sampled under radiographic guidance from prophylactic mastectomy specimens of women. The high and low MD tissues were maintained in separate vascularised biochambers in nulliparous or pregnant SCID mice for 4 weeks, or mice undergoing postpartum involution or lactation for three additional weeks. High and low MD biochamber material was harvested for histologic and radiographic comparisons during various murine peripartum states. High and low MD biochamber tissues in nulliparous mice were harvested at different timepoints for histologic and radiographic comparisons. Results High MD biochamber tissues had decreased stromal (p = 0.0027), increased adipose (p = 0.0003) and a trend to increased glandular tissue areas (p = 0.076) after murine postpartum involution. Stromal areas decreased (p = 0.042), while glandular (p = 0.001) and adipose areas (p = 0.009) increased in high MD biochamber tissues during lactation. A difference in radiographic density was observed in high (p = 0.0021) or low MD biochamber tissues (p = 0.004) between nulliparous, pregnant and involution groups. No differences in tissue composition were observed in high or low MD biochamber tissues maintained for different durations, although radiographic density increased over time. Conclusion High MD biochamber tissues had measurable histologic changes after postpartum involution or lactation. Alterations in radiographic density occurred in biochamber tissues between different peripartum states and over time. These findings demonstrate the dynamic nature of the human MD xenograft model, providing a platform for studying the biomolecular basis of MD-associated cancer risk. © 2013 Springer Science+Business Media New York.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mammographic density (MD) is the area of breast tissue that appears radiologically white on mammography. Although high MD is a strong risk factor for breast cancer, independent of BRCA1/2 mutation status, the molecular basis of high MD and its associated breast cancer risk is poorly understood. MD studies will benefit from an animal model, where hormonal, gene and drug perturbations on MD can be measured in a preclinical context. High and low MD tissues were selectively sampled by stereotactic biopsy from operative specimens of high-risk women undergoing prophylactic mastectomy. The high and low MD tissues were transferred into separate vascularised biochambers in the groins of SCID mice. Chamber material was harvested after 6 weeks for histological analyses and immunohistochemistry for cytokeratins, vimentin and a human-specific mitochondrial antigen. Within-individual analysis was performed in replicate mice, eliminating confounding by age, body mass index and process-related factors, and comparisons were made to the parental human tissue. Maintenance of differential MD post-propagation was assessed radiographically. Immunohistochemical staining confirmed the preservation of human glandular and stromal components in the murine biochambers, with maintenance of radiographic MD differential. Propagated high MD regions had higher stromal (p = 0.0002) and lower adipose (p = 0.0006) composition, reflecting the findings in the original human breast tissue, although glands appeared small and non-complex in both high and low MD groups. No significant differences were observed in glandular area (p = 0.4) or count (p = 0.4) between high and low MD biochamber tissues. Human mammary glandular and stromal tissues were viably maintained in murine biochambers, with preservation of differential radiographic density and histological features. Our study provides a murine model for future studies into the biomolecular basis of MD as a risk factor for breast cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mammographic density (MD) is a strong risk factor for breast cancer. It is altered by exogenous endocrine treatments, including hormone replacement therapy and Tamoxifen. Such agents also modify breast cancer (BC) risk. However, the biomolecular basis of how systemic endocrine therapy modifies MD and MD-associated BC risk is poorly understood. This study aims to determine whether our xenograft biochamber model can be used to study the effectiveness of therapies aimed at modulating MD, by examine the effects of Tamoxifen and oestrogen on histologic and radiographic changes in high and low MD tissues maintained within the biochamber model. High and low MD human tissues were precisely sampled under radiographic guidance from prophylactic mastectomy fresh specimens of high-risk women, then inserted into separate vascularized murine biochambers. The murine hosts were concurrently implanted with Tamoxifen, oestrogen or placebo pellets, and the high and low MD biochamber tissues maintained in the murine host environment for 3 months, before the high and low MD biochamber tissues were harvested for histologic and radiographic analyses. The radiographic density of high MD tissue maintained in murine biochambers was decreased in Tamoxifen-treated mice compared to oestrogen-treated mice (p = 0.02). Tamoxifen treatment of high MD tissue in SCID mice led to a decrease in stromal (p = 0.009), and an increase in adipose (p = 0.023) percent areas, compared to placebo-treated mice. No histologic or radiographic differences were observed in low MD biochamber tissue with any treatment. High MD biochamber tissues maintained in mice implanted with Tamoxifen, oestrogen or placebo pellets had dynamic and measurable histologic compositional and radiographic changes. This further validates the dynamic nature of the MD xenograft model, and suggests the biochamber model may be useful for assessing the underlying molecular pathways of Tamoxifen-reduced MD, and in testing of other pharmacologic interventions in a preclinical model of high MD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The conventional approaches to poverty alleviation in the slums entail a cocktail of interventions in health, education, governance and physical improvements, often stretching the scarce resources far and thin. Driven by the 'poverty' mindset, physical measures such as minimal paving, public water posts and community latrines actually brand the slums apart instead of assimilating them into the urban infrastructure fabric. The concept of Slum Networking proposes comprehensive water and environmental sanitation infrastructure as the central and catalytic leverage for holistic development. At costs less than the conventional 'slum' solutions, it tries to penetrate a high quality urban infrastructure net deeply into the slums to assimilate them into the city rather than lock them in as disadvantaged islands. Further, it transcends resource barriers and 'aid' through innovative partnerships and the latent resource mobilisation potential of the so-called 'poor'. This paper examines Slum Networking as implemented in Sanjaynagar in Ahmedabad, India and compares it with a similar settlement with no interventions in Ahmedabad. It assesses the knock-on impact of physical infrastructure on health, education and poverty. Finally, it evaluates the multiplier effect of physical infrastructure and the partnerships on the subsequent investments by the community in its own shelter and habitat. Copyright © 2009 Inderscience Enterprises Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: Gastric or intestinal patches, commonly used for reconstructive cystoplasty, may induce severe metabolic complications. The use of bladder tissues reconstructed in vitro could avoid these complications. We compared cellular differentiation and permeability characteristics of human native with in vitro cultured stratified urothelium. MATERIALS AND METHODS: Human stratified urothelium was induced in vitro. Morphology was studied with light and electron microscopy and expression of key cellular proteins was assessed using immunohistochemistry. Permeability coefficients were determined by measuring water, urea, ammonia and proton fluxes across the urothelium. RESULTS: As in native urothelium the stratified urothelial construct consisted of basal membrane and basal, intermediate and superficial cell layers. The apical membrane of superficial cells formed villi and glycocalices, and tight junctions and desmosomes were developed. Immunohistochemistry showed similarities and differences in the expression of cytokeratins, integrin and cellular adhesion proteins. In the cultured urothelium cytokeratin 20 and integrin subunits alpha6 and beta4 were absent, and symplekin was expressed diffusely in all layers. Uroplakins were clearly expressed in the superficial umbrella cells of the urothelial constructs, however, they were also present in intermediate and basal cells. Symplekin and uroplakins were expressed only in the superficial cells of native bladder tissue. The urothelial constructs showed excellent viability, and functionally their permeabilities for water, urea and ammonia were no different from those measured in native human urothelium. Proton permeability was even lower in the constructs compared to that of native urothelium. CONCLUSIONS: Although the in vitro cultured human stratified urothelium did not show complete terminal differentiation of its superficial cells, it retained the same barrier characteristics against the principal urine components. These results indicate that such in vitro cultured urothelium, after being grown on a compliant degradable support or in coculture with smooth muscle cells, is suitable for reconstructive cystoplasty.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development and performance of a three-stage tubular model of the large human intestine is outlined. Each stage comprises a membrane fermenter where flow of an aqueous polyethylene glycol solution on the outside of the tubular membrane is used to control the removal of water and metabolites (principally short chain fatty acids) from, and thus the pH of, the flowing contents on the fermenter side. The three stage system gave a fair representation of conditions in the human gut. Numbers of the main bacterial groups were consistently higher than in an existing three-chemostat gut model system, suggesting the advantages of the new design in providing an environment for bacterial growth to represent the actual colonic microflora. Concentrations of short chain fatty acids and Ph levels throughout the system were similar to those associated with corresponding sections of the human colon. The model was able to achieve considerable water transfer across the membrane, although the values were not as high as those in the colon. The model thus goes some way towards a realistic simulation of the colon, although it makes no pretence to simulate the pulsating nature of the real flow. The flow conditions in each section are characterized by low Reynolds numbers: mixing due to Taylor dispersion is significant, and the implications of Taylor mixing and biofilm development for the stability, that is the ability to operate without washout, of the system are briefly analysed and discussed. It is concluded that both phenomena are important for stabilizing the model and the human colon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In visual tracking experiments, distributions of the relative phase be-tween target and tracer showed positive relative phase indicating that the tracer precedes the target position. We found a mode transition from the reactive to anticipatory mode. The proposed integrated model provides a framework to understand the antici-patory behaviour of human, focusing on the integration of visual and soma-tosensory information. The time delays in visual processing and somatosensory feedback are explicitly treated in the simultaneous differential equations. The anticipatory behaviour observed in the visual tracking experiments can be ex-plained by the feedforward term of target velocity, internal dynamics, and time delay in somatosensory feedback.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to identify whether activity modeling framework supports problem analysis and provides a traceable and tangible connection from the problem identification up to solution modeling. Methodology validation relied on a real problem from a Portuguese teaching syndicate (ASPE), regarding courses development and management. The study was carried out with a perspective to elaborate a complete tutorial of how to apply activity modeling framework to a real world problem. Within each step of activity modeling, we provided a summary elucidation of the relevant elements required to perform it, pointed out some improvements and applied it to ASPE’s real problem. It was found that activity modeling potentiates well structured problem analysis as well as provides a guiding thread between problem and solution modeling. It was concluded that activity-based task modeling is key to shorten the gap between problem and solution. The results revealed that the solution obtained using activity modeling framework solved the core concerns of our customer and allowed them to enhance the quality of their courses development and management. The principal conclusion was that activity modeling is a properly defined methodology that supports software engineers in problem analysis, keeping a traceable guide among problem and solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For the successful integration of bone tissue engineering constructs into patients, an adequate supply with oxygen and nutrients is critical. Therefore, prevascularisation of bone tissue engineering constructs is desirable for bone formation, remodelling and regeneration. Co-culture systems, consisting of human endothelial cells and primary osteoblasts (pOB) as well as osteosarcoma cell lines, represent a promising method for studying the mechanisms involved in the vascularisation of constructs in bone tissue en- gineering and could provide new insights into the molecular and cellular mechanisms that control essential processes during angiogenesis. The present study demonstrated the im- portant components of co-culture systems with a focus on bone tissue replacement and the angiogenic effects of pOB and osteosarcoma cell lines on human endothelial cells. Furthermore, the studies emphasised an overall approach for analysis of signal molecules that are involved in the angiogenic activation of human endothelial cells by the regulation of VEGF-related pathways at the transcriptional and translational levels. The osteosarcoma cell lines Cal-72, MG-63 and SaOS-2, as well as pOB from several donors, differed in their angiogenesis-inducing potential in 2-D and 3-D co-culture systems. SaOS-2 cells appeared to have a high osteogenic differentiation level with no detectable angiogenesis-inducing potential in co-culture with human endothelial cells. The angiogenic potential of the osteoblast-like cells is mainly correlated with the upregulation of essential angiogenic growth factors, such as VEGF, bFGF and HGF and the downregulation of the angiogenesis inhibitor, endostatin. However, other factors involved in angiogenic regulation were found to differ between SaOS-2 cells, compared to Cal-72 and MG-63. The present study focuses on VEGF pathway-effecting genes as key players in the regulation of angiogenesis. The levels of VEGF and VEGF-effecting genes, such as TGF-α and TIMP-2 are down-regulated in SaOS-2 cells. In contrast, direct regulators of VEGF, such as IL6, IL8 and TNF are strongly upregulated, which indicates disruptions in growth factor regulating pathways in SaOS-2 cells. Potential pathways, which could be involved include MEK, PI3K, MAPK, STAT3, AKT or ERK. Additional treatment of co-cultures with single growth factors did not accelerate or improve the angiogenesis-inducing potential of SaOS-2 cells. Knowledge of the detailed molecular mechanisms involved in angiogenesis control will hopefully allow improved approaches to be developed for prevascularisation of bone tissue engineering constructs.