858 resultados para Human Postural Responses
Resumo:
The goal of this study was to investigate the effects of manipulation of the characteristics of visual stimulus on postural control in dyslexic children. A total of 18 dyslexic and 18 non-dyslexic children stood upright inside a moving room, as still as possible, and looked at a target at different conditions of distance between the participant and a moving room frontal wall (25-150 cm) and vision (full and central). The first trial was performed without vision (baseline). Then four trials were performed in which the room remained stationary and eight trials with the room moving, lasting 60 s each. Mean sway amplitude, coherence, relative phase, and angular deviation were calculated. The results revealed that dyslexic children swayed with larger magnitude in both stationary and moving conditions. When the room remained stationary, all children showed larger body sway magnitude at 150 cm distance. Dyslexic children showed larger body sway magnitude in central compared to full vision condition. In the moving condition, body sway magnitude was similar between dyslexic and non-dyslexic children but the coupling between visual information and body sway was weaker in dyslexic children. Moreover, in the absence of peripheral visual cues, induced body sway in dyslexic children was temporally delayed regarding visual stimulus. Taken together, these results indicate that poor postural control performance in dyslexic children is related to how sensory information is acquired from the environment and used to produce postural responses. In conditions in which sensory cues are less informative, dyslexic children take longer to process sensory stimuli in order to obtain precise information, which leads to performance deterioration. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Postural control is needed to perform various daily activities, from staying in one posture, standing, to sports situations. Many studies have shown that sensory systems help to maintain posture stable; acquisition of perceptual information, particularly through head and eye movements, allows static and dynamic equilibrium. Research related to both motor behavior and physical activities such as gymnastics have contributed to a better understanding of complexities involved in human postural control. The purpose of this study was to review the related literature, searching for possible answers on how everyday and sports actions are performed, with respect to the control and maintenance of posture. Its focus was on how the human body acquires information from the sensory systems, vision in special, and how this information acts to support the control of posture and gaze
Resumo:
Animal models have been relevant to study the molecular mechanisms of cancer and to develop new antitumor agents. Anyway, the huge divergence in mouse and human evolution made difficult the translation of the gained achievements in preclinical mouse based studies. The generation of clinically relevant murine models requires their humanization both concerning the creation of transgenic models and the generation of humanized mice in which to engraft a functional human immune system, and reproduce the physiological effects and molecular mechanisms of growth and metastasization of human tumors. In particular, the availability of genotypically stable immunodepressed mice able to accept tumor injection and allow human tumor growth and metastasization would be important to develop anti-tumor and anti-metastatic strategies. Recently, Rag2-/-;gammac-/- mice, double knockout for genes involved in lymphocyte differentiation, had been developed (CIEA, Central Institute for Experimental Animals, Kawasaki, Japan). Studies of human sarcoma metastasization in Rag2-/-; gammac-/- mice (lacking B, T and NK functionality) revealed their high metastatic efficiency and allowed the expression of human metastatic phenotypes not detectable in the conventionally used nude murine model. In vitro analysis to investigate the molecular mechanisms involved in the specific pattern of human sarcomas metastasization revealed the importance of liver-produced growth and motility factors, in particular the insulin-like growth factors (IGFs). The involvement of this growth factor was then demonstrated in vivo through inhibition of IGF signalling pathway. Due to the high growth and metastatic propensity of tumor cells, Rag2-/-;gammac-/- mice were used as model to investigate the metastatic behavior of rhabdomyosarcoma cells engineered to improve the differentiation. It has been recently shown that this immunodeficient model can be reconstituted with a human immune system through the injection of human cord blood progenitor cells. The work illustrated in this thesis revealed that the injection of different human progenitor cells (CD34+ or CD133+) showed peculiar engraftment and differentiation abilities. Experiments of cell vaccination were performed to investigate the functionality of the engrafted human immune system and the induction of specific human immune responses. Results from such experiments will allow to collect informations about human immune responses activated during cell vaccination and to define the best reconstitution and experimental conditions to create a humanized model in which to study, in a preclinical setting, immunological antitumor strategies.
Resumo:
A survey of an emerging tuberculosis epidemic among the Yanomami Indians of the Amazonian rain forest provided a unique opportunity to study the impact of tuberculosis on a population isolated from contact with the tubercle bacillus for millennia until the mid-1960s. Within the Yanomami population, an extraordinary high prevalence of active tuberculosis (6.4% of 625 individuals clinically examined) was observed, indicating a high susceptibility to disease, even among bacille Calmette–Guérin-vaccinated individuals. Observational studies on cell-mediated and humoral immune responses of the Yanomami Indians compared with contemporary residents of the region suggest profound differences in immunological responsiveness to Mycobacterium tuberculosis infection. Among the Yanomami, a very high prevalence of tuberculin skin test anergy was found. Of patients with active tuberculosis, 46% had purified protein derivative of tuberculosis reactions <10 mm; similarly 58% of recent bacillus Calmette–Guérin vaccines exhibited skin test reactions <5 mm. The Yanomami also had higher titers of antibodies against M. tuberculosis glycolipid antigens (>70%) than the control subjects comprised of Brazilians of European descent (14%). The antibodies were mostly of the IgM isotype. Among the tuberculosis patients who also produced IgG antibodies, the titers of IgG4 were significantly higher among the Yanomami than in the control population. Although it was not possible to analyze T-cell responses or patterns of lymphokine production in vitro because of the remoteness of the villages from laboratory facilities, the results suggest that the first encounter of the Yanomami Indian population with tuberculosis engenders a diminished cell-mediated immune response and an increased production antibody responses, relative to other populations with extensive previous contact with the pathogen. These findings suggest that tuberculosis may represent a powerful selective pressure on human evolution that over centuries has shaped the nature of human immune responses to infection.
Resumo:
During voluntary arm movements, the medial back muscles are differentially active. It is not known whether differential activity also occurs when the trunk is perturbed unpredictably, when the earliest responses are initiated by short-latency spinal mechanisms rather than voluntary commands. To assess this, in unpredictable and self-initiated conditions, a weight was dropped into a bucket that was held by the standing subject (n = 7). EMG activity was recorded from the deep (Deep MF), superficial (Sup MF) and lateral (Lat MF) lumbar multifidus, the thoracic erector spinae (ES) and the biceps brachii. With unpredictable perturbations, EMG activity was first noted in the biceps brachii, then the thoracic ES, followed synchronously in the components of the multifidus. During self-initiated perturbations, background EMG in the Deep MF increased two- to threefold, and the latency of the loading response decreased in six out of the seven subjects. In Sup MF and Lat MF, this increase in background EMG was not observed, and the latency of the loading response was increased. Short-latency reflex mechanisms do not cause differential action of the medial back muscles when the trunk is loaded. However, during voluntary tasks the central nervous system exerts a 'tuned response', which involves discrete activity in the deep and superficial components of the medial lumbar muscles in a way that varies according to the biomechanical action of the muscle component.
Resumo:
Dendritic cells (DC) from distinct DC subsets are essential contributors to normal human immune responses. Despite this, reliable assays that enable DC to be counted precisely have been slow to evolve. We have now developed a new single-platform flow cytometric assay based on TruCOUN(TM) beads and the whole blood Lyse/No-Wash protocol that allows precise counting of the CD14(-) blood DC subsets: CD11c(+)CD16(-) DC, CD11c(+)CD16(+) DC, CD123(hi) DC, CD1c(+) DC and BDCA-3(+) DC. This assay requires 50 mul of whole blood; does not rely on a hematology blood analyser for the absolute DC counts; allows DC counting in EDTA samples 24 It after collection; and is suitable for cord blood and peripheral blood. The data is highly reproducible with intra-assay and inter-assay coefficients of variation less than 3% and 11%, respectively. This assay does not produce the DC-T lymphocyte conjugates that result in DC counting abnormalities in conventional gradient-density separation procedures. Using the TruCOUNT assay, we established that absolute blood DC counts reduce with age in healthy individuals. In preliminary studies, we found a significantly lower absolute blood CD11c(+)CD16(+) DC count in stage III/IV versus stage I/II breast carcinoma patients and a lower absolute blood CD123(hi) DC count in multiple myeloma patients, compared to age-matched controls. These data indicate that scientific progress in DC counting technology will lead to the global standardization of DC counting and allow clinically meaningful data to be obtained. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Anterior knee pain (AKP) is common and has been argued to be related to poor patellofemoral joint control due to impaired coordination of the vasti muscles. However, there are conflicting data. Changes in motor unit firing may provide more definitive evidence. Synchronization of motor unit action potentials (MUAPs) in vastus medialis obliquus (VMO) and vastus lateralis (VL) may contribute to coordination in patellofemoral joint control. We hypothesized that synchronization may be reduced in AKP. Recordings of single MUAPs were made from VMO and multiunit electromyograph (EMG) recordings were made from VL. Averages of VL EMG recordings were triggered from the single MUAPs in VMO. Motor units in VL firing in association with the VMO motor units would appear as a peak in the VL EMG average. Data were compared to previous normative data. The proportion of trials in which a peak was identified in the triggered averages of VL EMG was reduced in people with AKP (38%) compared to controls (90%). Notably, although 80% of subjects had values less than controls, 20% were within normal limits. These results provide new evidence that motor unit synchronization is modified in the presence of pain and provide evidence for motor control dysfunction in AKP. Perspective: This study shows that coordination of motor units between the medial and lateral vasti muscles in people with anterior knee pain is reduced compared to people without knee pain. It confirms that motor control dysfunction is a factor in this condition and has implications for selection of rehabilitation strategies. (c) 2005 by the American Pain Society.
Resumo:
Patellofemoral pain (PFP) may be related to unfavorable knee joint loading. Delayed and/or reduced activity of vastus medialis obliquus (VMO) and different movement patterns have been identified in individuals with PFP in some studies, whereas other studies have failed to show a difference compared to non-affected controls. The discrepancy between study results may depend on the different tasks that have been investigated. No previous study has investigated these variables in postural responses to unpredictable perturbations in PFP. Whole body three dimensional kinematics and surface EMG of quadriceps muscles activation was studied in postural responses to unpredictable support surface translations in 17 women with PFP who were pain free at the time of testing, and 17 matched healthy controls. The results of the present study showed earlier onset of VMO activity and associated changes in kinematics to anterior platform translation in the PFP subjects. We suggest that the relative timing between the portions quadriceps muscles may be task specific and part of an adapted response in attempt to reduce knee joint loading. This learned response appears to remain even when the pain is no longer present.
Resumo:
Excessive consumption of dietary fat is acknowledged to be a widespread problem linked to a range of medical conditions. Despite this, little is known about the specific sensory appeal held by fats and no previous published research exists concerning human perception of non-textural taste qualities in fats. This research aimed to address whether a taste component can be found in sensory perception of pure fats. It also examined whether individual differences existed in human taste responses to fat, using both aggregated data analysis methods and multidimensional scaling. Results indicated that individuals were able to detect both the primary taste qualities of sweet, salty, sour and bitter in pure processed oils and reliably ascribe their own individually-generated taste labels, suggested that a taste component may be present in human responses to fat. Individual variation appeared to exist, both in the perception of given taste qualities and in perceived intensity and preferences. A number of factors were examined in relation to such individual differences in taste perception, including age, gender, genetic sensitivity to 6-n-propylthiouracil, body mass, dietary preferences and intake, dieting behaviours and restraint. Results revealed that, to varying extents, gender, age, sensitivity to 6-n-propylthiouracil, dietary preferences, habitual dietary intake and restraint all appeared to be related to individual variation in taste responses to fat. However, in general, these differences appeared to exist in the form of differing preferences and levels of intensity with which taste qualities detected in fat were perceived, as opposed to the perception of specific taste qualities being associated with given traits or states. Equally, each of these factors appeared to exert only a limited influence upon variation in sensory responses and thus the potential for using taste responses to fats as a marker for issues such as over-consumption, obesity or eating disorder is at present limited.
Resumo:
This study examined the effect of iron deprivation and sub-inhibitory concentrations of antifungal agents on yeast cell surface antigen recognition by antibodies from patients with Candida infections. Separation of cell wall surface proteins by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and immunological detection by immunoblotting, revealed that antigenic profiles of yeasts were profoundly influenced by the growth environment. Cells grown under iron-depleted conditions expressed several iron-regulated proteins that were recognized by antibodies from patient sera. An attempt to characterize these proteins by lectin blotting with concanavalin A revealed that some could be glycoprotein in nature. Furthermore, these proteins which were located within cell walls and on yeast surfaces, were barely or not expressed in yeasts cultivated under iron-sufficient conditions. The magnitude and heterogeneity of human antibody responses to these iron-regulated proteins were dependent on the type of Candida infection, serum antibody class and yeast strain. Hydroxamate-type siderophores were also detected in supernatants of iron depleted yeast cultures. This evidence suggests that Candida albicans expresses iron-regulated proteins/glycoproteins in vitro which may play a role in siderophore-mediated iron uptake in Candida albicans. Sequential monitoring of IgG antibodies directed against yeast surface antigens during immunization of rabbits revealed that different antigens were recognized particularly during early and later stages of immunization in iron-depleted cells compared to iron-sufficient cells. In vitro and in vivo adherence studies demonstrated that growth phase, yeast strain and growth conditions affect adhesion mechanisms. In particular, growth under iron-depletion in the presence of sub-inhibitory concentrations of polyene and azole antifungals enhanced the hydrophobicity of C.albicans. Growth conditions also influenced MICs of antifungals, notably that of ketoconazole. Sub-inhibitory concentrations of amphotericin B and fluconazole had little effect on surface antigens, whereas nystatin induced profound changes in surface antigens of yeast cells. The effects of such drug concentrations on yeast cells coupled with host defence mechanisms may have a significant affect on the course of Candida infections.
Resumo:
Current commercially available mimics contain varying amounts of either the actual explosive/drug or the chemical compound of suspected interest by biological detectors. As a result, there is significant interest in determining the dominant chemical odor signatures of the mimics, often referred to as pseudos, particularly when compared to the genuine contraband material. This dissertation discusses results obtained from the analysis of drug and explosive headspace related to the odor profiles as recognized by trained detection canines. Analysis was performed through the use of headspace solid phase microextraction in conjunction with gas chromatography mass spectrometry (HS-SPME-GC-MS). Upon determination of specific odors, field trials were held using a combination of the target odors with COMPS. Piperonal was shown to be a dominant odor compound in the headspace of some ecstasy samples and a recognizable odor mimic by trained detection canines. It was also shown that detection canines could be imprinted on piperonal COMPS and correctly identify ecstasy samples at a threshold level of approximately 100ng/s. Isosafrole and/or MDP-2-POH show potential as training aid mimics for non-piperonal based MDMA. Acetic acid was shown to be dominant in the headspace of heroin samples and verified as a dominant odor in commercial vinegar samples; however, no common, secondary compound was detected in the headspace of either. Because of the similarities detected within respective explosive classes, several compounds were chosen for explosive mimics. A single based smokeless powder with a detectable level of 2,4-dinitrotoluene, a double based smokeless powder with a detectable level of nitroglycerine, 2-ethyl-1-hexanol, DMNB, ethyl centralite and diphenylamine were shown to be accurate mimics for TNT-based explosives, NG-based explosives, plastic explosives, tagged explosives, and smokeless powders, respectively. The combination of these six odors represents a comprehensive explosive odor kit with positive results for imprint on detection canines. As a proof of concept, the chemical compound PFTBA showed promise as a possible universal, non-target odor compound for comparison and calibration of detection canines and instrumentation. In a comparison study of shape versus vibration odor theory, the detection of d-methyl benzoate and methyl benzoate was explored using canine detectors. While results did not overwhelmingly substantiate either theory, shape odor theory provides a better explanation of the canine and human subject responses.
Resumo:
Current commercially available mimics contain varying amounts of either the actual explosive/drug or the chemical compound of suspected interest by biological detectors. As a result, there is significant interest in determining the dominant chemical odor signatures of the mimics, often referred to as pseudos, particularly when compared to the genuine contraband material. This dissertation discusses results obtained from the analysis of drug and explosive headspace related to the odor profiles as recognized by trained detection canines. Analysis was performed through the use of headspace solid phase microextraction in conjunction with gas chromatography mass spectrometry (HS-SPME-GC-MS). Upon determination of specific odors, field trials were held using a combination of the target odors with COMPS. Piperonal was shown to be a dominant odor compound in the headspace of some ecstasy samples and a recognizable odor mimic by trained detection canines. It was also shown that detection canines could be imprinted on piperonal COMPS and correctly identify ecstasy samples at a threshold level of approximately 100ng/s. Isosafrole and/or MDP-2-POH show potential as training aid mimics for non-piperonal based MDMA. Acetic acid was shown to be dominant in the headspace of heroin samples and verified as a dominant odor in commercial vinegar samples; however, no common, secondary compound was detected in the headspace of either. Because of the similarities detected within respective explosive classes, several compounds were chosen for explosive mimics. A single based smokeless powder with a detectable level of 2,4-dinitrotoluene, a double based smokeless powder with a detectable level of nitroglycerine, 2-ethyl-1-hexanol, DMNB, ethyl centralite and diphenylamine were shown to be accurate mimics for TNT-based explosives, NG-based explosives, plastic explosives, tagged explosives, and smokeless powders, respectively. The combination of these six odors represents a comprehensive explosive odor kit with positive results for imprint on detection canines. As a proof of concept, the chemical compound PFTBA showed promise as a possible universal, non-target odor compound for comparison and calibration of detection canines and instrumentation. In a comparison study of shape versus vibration odor theory, the detection of d-methyl benzoate and methyl benzoate was explored using canine detectors. While results did not overwhelmingly substantiate either theory, shape odor theory provides a better explanation of the canine and human subject responses.
Resumo:
Strontium (Sr), Zinc (Zn), magnesium (Mg), and silicon (Si) are reported to be essential trace elements for the growth and mineralization of bone. We speculated that the combination of these bioactive elements in bioceramics may be effective to regulate the osteogenic property of boneforming cells. In this study, two Sr-containing silicate bioceramics, Sr2ZnSi2O7 (SZS) and Sr2MgSi2O7 (SMS), were prepared. The biological response of human bone marrow mesenchymal stem cells (BMSCs) to the two bioceramics (in the forms of powders and dense ceramic bulks) was systematically studied. In powder form, the effect of powder extracts on the viability and alkaline phosphatase (ALP) activity of BMSCs was investigated. In ceramic disc form, both direct and indirect coculture of BMSCs with ceramic discs were used to investigate their biological response, including attachment, proliferation, ALP activity, and bone-related genes expression. Beta-tricalcium phosphate (b-TCP) and akermanite (Ca2MgSi2O7, CMS) were used as control materials. The results showed that the Sr, Zn, and Si (or Sr, Mg, and Si)-containing ionic products from SZS and SMS powders enhanced ALP activity of BMSCs, compared to those from b-TCP. Both SZS and SMS ceramic discs supported the growth of BMSCs, and most importantly, significantly enhanced the ALP activity and bone-related genes expression of BMSCs as compared to b-TCP. The results suggest that the specific combination of bioactive ions (Sr, Zn, Si, e.g.) in bioceramics is a viable way to improve the biological performance of biomaterials, and the form of materials and surface properties were nonnegligible factors to influence cell response.