996 resultados para Human Neutrophils


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The tight regulation of granulocyte chemotaxis is crucial for initiation and resolution of inflammation. Here, we show that DAPK2, a Ca(2+)/CaM-sensitive serine/threonine kinase known to modulate cell death in various cell types, is a novel regulator of migration in granulocytes. We demonstrate that human neutrophils and eosinophils express DAPK2 but unlike other leukocytes, no DAPK1 or DAPK3 protein. When DAPK activities were blocked by inhibitors, we found that neither granulocyte lifespan nor phagocytosis was affected. However, such pharmacological inactivation of DAPK activity abolished motility of granulocytes in response to intermediary but not end-target chemoattractants ex vivo. The defect in chemotaxis in DAPK2-inactive granulocytes is likely a result of reduced polarization of the cells, mediated by a lack of MLC phosphorylation, resulting in radial F-actin and pseudopod formation. As neutrophils treated with DAPKi also showed reduced recruitment to the site of inflammation in a mouse peritonitis model, DAPK2 may be a novel target for anti-inflammatory therapies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM) and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90) also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA) we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET). We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neisseria gonorrhoeae (GC) or Escherichia coli expressing phase-variable opacity (Opa) protein (Opa+ GC or Opa+ E. coli) adhere to human neutrophils and stimulate phagocytosis, whereas their counterparts not expressing Opa protein (Opa− GC or Opa− E. coli) do not. Opa+ GC or E. coli do not adhere to human lymphocytes and promyelocytic cell lines such as HL-60 cells. The adherence of Opa+ GC to the neutrophils can be enhanced dramatically if the neutrophils are preactivated. These data suggest that the components binding the Opa+ bacteria might exist in the granules. CGM1a antigen, a transmembrane protein of the carcinoembryonic antigen family, is exclusively expressed in the granulocytic lineage. The predicted molecular weight of CGM1a is ≈30 kDa. We observed specific binding of OpaI+ E. coli to a 30-kDa band of polymorphonuclear leukocytes lysates. To prove the hypothesis that the 30-kDa CGM1a antigen from neutrophils was the receptor of Opa+ bacteria, we showed that a HeLa cell line expressing human CGM1a antigen (HeLa-CGM1a) bound Opa+ E. coli and subsequently engulfed the bacteria. Monoclonal antibodies (COL-1) against CGM1 blocked the interaction between Opa+ E. coli and HeLa-CGM1a. These results demonstrate that HeLa cells when expressing the CGM1a antigens bind and internalize OpaI+ bacteria.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two monoclonal antibodies, anti-IL8R1 and anti-IL8R2, raised against both interleukin 8 receptors (IL-8R) of human neutrophils, IL-8R1 and IL-8R2, were used to study individual receptor functions after stimulation with IL-8, GRO alpha, or NAP-2. Efficacy and selectivity of the antibodies were tested in Jurkat cells transfected with cDNA coding for one or the other receptor. The binding of 125 I labeled IL-8 and IL-8-induced changes of the cytosolic free Ca2+ concentration were inhibited by anti-IL8RI in cells expressing IL-8R1 and by anti-IL8R2 in cells expressing IL-8R2. In human neutrophils, release of elastase was observed after stimulation with IL-8 or GRO alpha. The response to IL-8 was inhibited slightly by anti-IL8R1 and more substantially when both monoclonal antibodies were present, while the response to GRO alpha was inhibited by anti-IL8R2 but was not affected by anti-IL8R1. These results indicate that both IL-8 receptors can signal independently for granule enzyme release. Superoxide production, a measure of the respiratory burst, was obtained with increasing concentrations of IL-8 with maximum effects at 25 to 50 nM, but no response was observed upon challenge with GRO alpha or NAP-2 up to 1000 nM. The superoxide production induced by IL-8 was inhibited by anti-IL8R1, but was not affected by anti-IL8R2. Stimulation of neutrophils with IL-8, in contrast to GRO alpha or NAP-2, also elicited phospholipase D activity. The effect of IL-8 was again inhibited by anti-IL-8R1 but not by anti-IL8R2, indicating that this response, like the respiratory burst, was mediated by IL-8R1. Taken together, our results show that IL-8R1 and IL-8R2 are functionally different. Responses, such as cytosolic free Ca2+ changes and the release of granule enzymes, are mediated through both receptors, whereas the respiratory burst and the activation of phospholipase D depend exclusively on stimulation through IL-8R1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The immunophilins of the FK506-binding protein (FKBP) family are intracellular proteins that bind the immunosuppresants FK506 and rapamycin. In this study we show that HMC-1 mast cells sensitized with IgE release FKBP12 upon stimulation with anti-IgE. The release is rapid and not affected by actinomycin D or cycloheximide, suggesting that it is due to exocytosis from a storage compartment. FKBP12 from HMC-1 mast cells exhibits biological activity. When applied extracellularly to human neutrophils, it induces transient changes in the intracellular Ca2+ concentration ([Ca2+]i) due to Ca2+ release from intracellular stores. Inhibition of [Ca2+]i changes by ruthenium red and ryanodine indicates that ryanodine receptor/Ca2+ release channels are involved in FKBP12-induced Ca2+ signaling. Neutrophil activation by mast cell-derived FKBP12 is prevented by complexing FKBP12 with FK506 or rapamycin. These results demonstrate that extracellular FKBP12 functions as a cytokine in cell-to-cell communication. They further suggest a pathophysiological role for FKBP12 as a mediator in immediate or type I hypersensitivity and may have implications for novel therapeutic strategies in the treatment of allergic disorders with FK506 and rapamycin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stable expression of human groups IIA and X secreted phospholipases A(2) (hGIIA and hGX) in CHO-K1 and HEK293 cells leads to serum- and interleukin-1beta-promoted arachidonate release. Using mutant CHO-K1 cell lines, it is shown that this arachidonate release does not require heparan sulfate proteoglycan- or glycosylphosphatidylinositol-anchored proteins. It is shown that the potent secreted phospholipase A(2) inhibitor Me-Indoxam is cell-impermeable. By use of Me-Indoxam and the cell-impermeable, secreted phospholipase A(2) trapping agent heparin, it is shown that hGIIA liberates free arachidonate prior to secretion from the cell. With hGX-transfected CHO-K1 cells, arachidonate release occurs before and after enzyme secretion, whereas all of the arachidonate release from HEK293 cells occurs prior to enzyme secretion. Immunocytochemical studies by confocal laser and electron microscopies show localization of hGIIA to the cell surface and Golgi compartment. Additional results show that the interleukin-1beta-dependent release of arachidonate is promoted by secreted phospholipase A(2) expression and is completely dependent on cytosolic (group IVA) phospholipase A(2). These results along with additional data resolve the paradox that efficient arachidonic acid release occurs with hGIIA-transfected cells, and yet exogenously added hGIIA is poorly able to liberate arachidonic acid from mammalian cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neisseria gonorrhoeae has well-characterized oxidative stress defense systems that protect against oxidative killing in in vitro assays. In contrast, mutant strains of N. gonorrhoeae lacking oxidative stress defenses are identical to the wild type when tested in an ex vivo survival assay using human polymorphonuclear leukocytes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in the human circulation and is secreted by the adrenals in an age-dependent fashion, with maximum levels during the third decade and very low levels in old age. DHEAS is considered an inactive metabolite, whereas cleavage of the sulfate group generates dehydroepiandrosterone (DHEA), a crucial sex steroid precursor. However, here we show that DHEAS, but not DHEA, increases superoxide generation in primed human neutrophils in a dose-dependent fashion, thereby impacting on a key bactericidal mechanism. This effect was not prevented by coincubation with androgen and estrogen receptor antagonists but was reversed by the protein kinase C inhibitor Bisindolylmaleimide 1. Moreover, we found that neutrophils are unique among leukocytes in expressing an organic anion-transporting polypeptide D, able to mediate active DHEAS influx transport whereas they did not express steroid sulfatase that activates DHEAS to DHEA. A specific receptor for DHEAS has not yet been identified, but we show that DHEAS directly activated recombinant protein kinase C-ß (PKC-ß) in a cell-free assay. Enhanced PKC-ß activation by DHEAS resulted in increased phosphorylation of p47phox, a crucial component of the active reduced nicotinamide adenine dinucleotide phosphate complex responsible for neutrophil superoxide generation. Our results demonstrate that PKC-ß acts as an intracellular receptor for DHEAS in human neutrophils, a signaling mechanism entirely distinct from the role of DHEA as sex steroid precursor and with important implications for immunesenescence, which includes reduced neutrophil superoxide generation in response to pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the associated redox chaperone PDI. Here, we investigated the occurrence and possible underlying mechanisms of PDI-mediated regulation of neutrophil NADPH oxidase. In a semirecombinant cell-free system, PDI inhibitors scrRNase (100 mu g/mL) or bacitracin (1 mM) near totally suppressed superoxide generation. Exogenously incubated, oxidized PDI increased (by similar to 40%), whereas PDIred diminished (by similar to 60%) superoxide generation. No change occurred after incubation with PDI serine-mutated in all four redox cysteines. Moreover, a mimetic CxxC PDI inhibited superoxide production by similar to 70%. Thus, oxidized PDI supports, whereas reduced PDI down-regulates, intrinsic membrane NADPH oxidase complex activity. In whole neutrophils, immunoprecipitation and colocalization experiments demonstrated PDI association with membrane complex subunits and prominent thiol-mediated interaction with p47(phox) in the cytosol fraction. Upon PMA stimulation, PDI was mobilized from azurophilic granules to cytosol but did not further accumulate in membranes, contrarily to p47(phox). PDI-p47(phox) association in cytosol increased concomitantly to opposite redox switches of both proteins; there was marked reductive shift of cytosol PDI and maintainance of predominantly oxidized PDI in the membrane. Pulldown assays further indicated predominant association between PDIred and p47(phox) in cytosol. Incubation of purified PDI (> 80% reduced) and p47(phox) in vitro promoted their arachidonate-dependent association. Such PDI behavior is consistent with a novel cytosolic regulatory loop for oxidase complex (re) cycling. Altogether, PDI seems to exhibit a supportive effect on NADPH oxidase activity by acting as a redox-dependent enzyme complex organizer. J. Leukoc. Biol. 90: 799-810; 2011.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerous studies investigating the possible role of altered Ca2+ homeostasis in hypertension have compared resting and agonist-stimulated intracellular free Ca2+ ([Ca2+](i)) in cultured aortic smooth muscle cells from spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. However, such studies have not given consistent results. Differences in the method used to load cells with the Ca2+-sensitive indicator fura-2 have been investigated here as a possible source of variability between studies. We also describe the adaptation of a fluorescence technique for the assessment of basal Ca2+ permeability in SHR and WKY through the measurement of Mn2+ influx. The results are consistent with the hypothesis that basal Ca2+ influx is elevated in cultured aortic smooth muscle cells from SHR compared to those from WKY. However, this was not reflected as a significant difference between the two strains in basal or angiotensin II (200 nmol/L)stimulated [Ca2+](i). Furthermore, this result was not dependent on the protocol used to load cells with fura-2. Hence, measurement of bulk [Ca2+](i) does not appear to be the most sensitive parameter for altered Ca2+ homeostasis in SHR. Other compartments of the cell may better reflect altered Ca2+ fluxes in hypertension and are discussed in this work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The molecular mechanism by which polydnaviruses of endoparasitoid wasps disrupt cell-mediated encapsulation reactions of host insects is largely unknown. Here we show that a polydnavirus-encoded protein, produced from baculovirus and plasmid expression vectors, prevents cell surface exposure of lectin-binding sites and microparticle formation during immune stimulation of haemocytes. The inactivation of immune-related cellular processes by this protein was analysed using a specific lectin and annexin V and shown to be virtually identical to polydnavirus-mediated effects on haemocytes. Cytochalasin D application has similar effects on haemocytes, suggesting that the immune suppression by the polydnavirus protein is caused by the destabilization of actin filaments. Since the exposure of cell surface glycoproteins and the formation of microparticles are part of an immune response to foreign objects or microorganisms and a prerequisite for cell-mediated encapsulation of microorganisms and parasites, the virus-encoded protein may become an important tool for the inactivation of cellular immune reactions in insects and an essential component in understanding immune suppression in parasitized host insects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and purpose: Chemokine receptors CXCR1 and CXCR2 may mediate influx of neutrophils in models of acute and chronic inflammation. The potential benefits of oral administration of a CXCR1/2 inhibitor, DF 2162, in adjuvant-induced polyarthritis (AIA) were investigated. Experimental approach: A model of AIA in rats was used to compare the therapeutic effects of the treatment with DF2162, anti-TNF or anti-CINC-1 antibodies on joint inflammation and local production of cytokines and chemokines. Key results: DF2162 prevented chemotaxis of rat and human neutrophils induced by chemokines acting on CXCR1/2. DF2162 was orally bioavailable and metabolized to two major metabolites. Only metabolite 1 retained CXCR1/2 blocking activity. Treatment with DF2162 ( 15 mg kg(-1), twice daily) or metabolite 1, but not metabolite 2, starting on day 10 after arthritis induction diminished histological score, the increase in paw volume, neutrophil influx and local production of TNF, IL-1 beta, CCL2 and CCL5. The effects of DF2162 were similar to those of anti-TNF, and more effective than those of anti-CINC-1, antibodies. DF2162 prevented disease progression even when started 13 days after arthritis induction. Conclusions and implications: DF 2162, a novel orally-active non-competitive allosteric inhibitor of CXCR1 and CXCR2, significantly ameliorates AIA in rats, an effect quantitatively and qualitatively similar to those of anti-TNF antibody treatment. These findings highlight the contribution of CXCR2 in the pathophysiology of AIA and suggest that blockade of CXCR1/2 may be a valid therapeutic target for further studies aiming at the development of new drugs for treatment of rheumatoid arthritis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent in vitro data have suggested that the flavonoid quercetin (1) does not affect the functioning of neutrophils. Therefore, we evaluated in vivo and in vitro whether or not 1 affects neutrophil function, focusing on recruitment. The in vivo treatment with 1 inhibited in a dose-dependent manner the recruitment of neutrophils to the peritoneal cavity of mice induced by known chemotatic factors such as CXCL1, CXCL5, LTB(4), and fMLP. Further-more, 1 also inhibited in a concentration-dependent manner the chemoattraction of human neutrophils induced by CXCL8, LTB(4), and fMLP in a Boyden chamber. In vitro treatment with 1 did not affect human neutrophil surface expression of CXCR1, CXCR2, BLT1, or FLPR1, but rather reduced actin polymerization. These results suggest that 1 inhibits actin polymerization, hence, explaining the inhibition of neutrophil recruitment in vivo and in vitro and highlighting its possible usefulness to diminish excessive neutrophil migration during inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sepsis results from an overwhelming response to infection and is a major contributor to death in intensive care units worldwide. In recent years, we and others have shown that neutrophil functionality is impaired in sepsis. This correlates with sepsis severity and contributes to aggravation of sepsis by precluding bacterial clearance. Nitric oxide (NO) is a major contributor to the impairment of neutrophil function in sepsis. However, attempts to inhibit NO synthesis in sepsis resulted in increased death despite restoring neutrophil migration. This could be in part attributed to a reduction of the NO-dependent microbicidal activity of neutrophils. In sepsis, the beneficial effects resulting from the inhibition of soluble guanylyl cyclase (sGC), a downstream target of NO, have long been appreciated but poorly understood. However, the effects of sGC inhibition on neutrophil function in sepsis have never been addressed. In the present study, we show that TLR activation in human neutrophils leads to decreased chemotaxis, which correlated with chemotactic receptor internalization and increased G protein-coupled receptor kinase 2 expression, in a process involving the NO-sGC-protein kinase G axis. We also demonstrate that inhibition of sGC activity increased survival in a murine model of sepsis, which was paralleled by restored neutrophil migratory function and increased bacterial clearance. Finally, the beneficial effect of sGC inhibition could also be demonstrated in mice treated after the onset of sepsis. Our results suggest that the beneficial effects of sGC inhibition in sepsis could be at least in part attributed to a recovery of neutrophil functionality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sepsis is a systemic inflammatory condition following bacterial infection with a high mortality rate and limited therapeutic options(1,2). Here we show that interleukin-33 (IL-33) reduces mortality in mice with experimental sepsis from cecal ligation and puncture (CLP). IL-33-treated mice developed increased neutrophil influx into the peritoneal cavity and more efficient bacterial clearance than untreated mice. IL-33 reduced the systemic but not the local proinflammatory response, and it did not induce a T helper type 1 (T(H)1) to T(H)2 shift. The chemokine receptor CXCR2 is crucial for recruitment of neutrophils from the circulation to the site of infection(3). Activation of Toll-like receptors (TLRs) in neutrophils downregulates CXCR2 expression and impairs neutrophil migration(4). We show here that IL-33 prevents the downregulation of CXCR2 and inhibition of chemotaxis induced by the activation of TLR4 in mouse and human neutrophils. Furthermore, we show that IL-33 reverses the TLR4-induced reduction of CXCR2 expression in neutrophils via the inhibition of expression of G protein coupled receptor kinase-2 (GRK2), a serine-threonine protein kinase that induces internalization of chemokine receptors(5,6). Finally, we find that individuals who did not recover from sepsis had significantly more soluble ST2 (sST2, the decoy receptor of IL-33) than those who did recover. Together, our results indicate a previously undescribed mechanism of action of IL-33 and suggest a therapeutic potential of IL-33 in sepsis.