964 resultados para Human Cytochrome-p450 1a2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochrome P450 monooxygenase system consists of NADPH- cytochrome P450 reductase (P450 reductase) and cytochromes P450, which can catalyze the oxidation of a wide variety of endogenous and exogenous compounds, including steroid hormones, fatty acids, drugs, and pollutants. The functions of this system are as diverse as the substrates. P450 reductase transfers reducing equivalents from NADPH to P450, which in turn catalyzes metabolic reactions. This enzyme system has the highest level of activity in the liver. It is also present in other tissues, including brain. The functions of this enzyme system in brain seem to include: neurotransmission, neuroendocrinology, developmental and behavioral modulation, regulation of intracellular levels of cholesterol, and potential neurotoxicity.^ In this study, we have set up the rat glioma C6 cell line as an in vitro model system to examine the expression, induction, and tissue-specific regulation of P450s and P450 reductase. Rat glioma C6 cells were treated with P450 inducers phenobarbital (PB) or benzo(a)anthracene (BA). The presence of P450 reductase and of cytochrome P450 1A1, 1A2, 2A1, 2B1/2, 2C7, 2D1-5 and 2E1 was detected by reverse transcription followed by polymerase chain reaction (RT-PCR) and confirmed by restriction digestion. The induction of P450 1A1 and 2B1/2 and P450 reductase was quantified using competitive PCR. Ten- and five-fold inductions of P450 1A and 2B mRNA after BA or PB treatments, respectively, were detected. Western blot analysis of microsomal preparations of glioma C6 cells demonstrated the presence of P450 1A, 2B and P450 reductase at the protein level. ELISAs showed that BA and PB induce P450 1A and 2B proteins 7.3- and 13.5-fold, respectively. Microsomes prepared from rat glioma C6 cells showed cytochrome P450 CO difference spectra with absorption at or near 450 nm. Microsomes prepared from rat glioma C6 cells demonstrated much higher levels of ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-dealkylase (PROD) activity, when treated with BA or PB, respectively. These experiments provide further evidence that the rat glioma C6 cell line contains an active cytochrome P450 monooxygenase system which can be induced by P450 inducers. The mRNAs of P450 1A1 and 2B1/2 can not bind to the oligo(dT) column efficiently, indicating they have very short poly(A) tails. This finding leads us to study the tissue specific regulation of P450s at post-transcriptional level. The half lives of P450 1A1 and 2B1/2 mRNA in glioma C6 cells are only 1/10 and 1/3 of that in liver. This may partly contribute to the low expression level of P450s in glial cells. The induction of P450s by BA or PB did not change their mRNA half lives, indicating the induction may be due to transcriptional regulation. In summary of this study, we believe the presence of the cytochrome P450 monooxygenase system in glial cells of the brain may be important in chemotherapy and carcinogenesis of brain tumors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochromes P450 (P450) comprise a superfamily of hemoproteins that function in concert with NADPH-cytochrome P450 reductase (P450-reductase) to metabolize both endogenous and exogenous compounds. Many pharmacological agents undergo phase I metabolism by this P450 and P450-reductase monooxygenase system. Phase I metabolism ensures that these highly hydrophobic xenobiotics are made more hydrophilic, and hence easier to extrude from the body. While the majority of phase I metabolism occurs in the liver, metabolism in extrahepatic organ-systems like the intestine, kidney, and brain can have important roles in drug metabolism and/or efficacy. ^ While P450-mediated phase I metabolism has been well studied, investigators have only recently begun to elucidate what physiological roles P450 may have. One way to approach this question is to study P450s that are highly or specifically expressed in extrahepatic tissues. In this project I have studied the role of a recently cloned P450 family member, P450 2D18, that was previously shown to be expressed in the rat brain and kidney, but not in the liver. To this end, I have used the baculovirus expression system to over-express recombinant P450 2D18 and purified the functional enzyme using nickel and hydroxylapatite chromatography. SDS-PAGE analysis indicated that the enzyme was purified to electrophoretic homogeneity and Western analysis showed cross-reactivity with rabbit anti-human P450 2D6. Carbon monoxide difference spectra indicated that the purified protein contained no denatured P450 enzyme; this allowed for further characterization of the substrates and metabolites formed by P450 2D18-mediated metabolism. ^ Because P450 2D18 is expressed in brain, we characterized the activity toward several psychoactive drugs including the antidepressants imipramine and desipramine, and the anti-psychotic drugs chlorpromazine and haloperidol. P450 2D18 preferentially catalyzed the N-demethylation of imipramine, desipramine, and chlorpromazine. This is interesting given the fact that other P450 isoforms form multiple metabolites from such compounds. This limited metabolic profile might suggest that P450 2D18 has some unique function, or perhaps a role in endobiotic metabolism. ^ Further analysis of possible endogenous substrates for P450 2D18 led to the identification of dopamine and arachidonic acid as substrates. It was shown that P450 2D18 catalyzes the oxidation of dopamine to aminochrome, and that the enzyme binds dopamine with an apparent KS value of 678 μM, a value well within reported dopamine concentration in brain dopaminergic systems. Further, it was shown that P450 2D18 binds arachidonic acid with an apparent KS value of 148 μM, and catalyzes both the ω-hydroxylation and epoxygenation of arachidonic acid to metabolites that have been shown to have vasoactive properties in brain, kidney, and heart tissues. These data provide clues for endogenous roles of P450 within the brain, and possible involvement in the pathogenesis of Parkinson's disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pregnane X receptor (PXR) has been postulated to play a role in the metabolism of α-tocopherol owing to the up-regulation of hepatic cytochrome P450 (P450) 3A in human cell lines and murine models after α-tocopherol treatment. However, in vivo studies confirming the role of PXR in α-tocopherol metabolism in humans presents significant difficulties and has not been performed. PXR-humanized (hPXR), wild-type, and Pxr-null mouse models were used to determine whether α-tocopherol metabolism is influenced by species-specific differences in PXR function in vivo. No significant difference in the concentration of the major α-tocopherol metabolites was observed among the hPXR, wild-type, and Pxr-null mice through mass spectrometry-based metabolomics. Gene expression analysis revealed significantly increased expression of Cyp3a11 as well as several other P450s only in wild-type mice, suggesting species-specificity for α-tocopherol activation of PXR. Luciferase reporter assay confirmed activation of mouse PXR by α-tocopherol. Analysis of the Cyp2c family of genes revealed increased expression of Cyp2c29, Cyp2c37, and Cyp2c55 in wild-type, hPXR, and Pxr-null mice, which suggests PXR-independent induction of Cyp2c gene expression. This study revealed that α-tocopherol is a partial agonist of PXR and that PXR is necessary for Cyp3a induction by α-tocopherol. The implications of a novel role for α-tocopherol in Cyp2c gene regulation are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochrome P450 4F subfamily comprises a group of enzymes that metabolize derivatives of arachidonic acid such as prostaglandins, lipoxins leukotrienes and hydroxyeicosatetraenoic acids, which are important mediators involved in the inflammatory response. Therefore, we speculate that CYP4Fs might be able to modulate the extent of the inflammation by controlling of the tissue levels of these inflammatory mediators, especially, leukotriene B4. One way to provide support for this hypothesis is to test whether the expression of CYP4Fs changes under inflammatory conditions, since these changes are required to adjust the levels of inflammatory mediators. ^ A lipopolysacchride (LPS) induced rat inflammation model was used to analyze the expressions of rat CYP4F4 and CYP4F5 in liver and kidney. LPS administration did not change the constitutive expression level of CYP4F4 and CYP4F5. In liver, the expressions of CYP4F4 and CYP4F5 decreased to 50–60% of the untreated level. The same effect of LPS on CYP4F4 and CYP4F5 expression can be mimicked in hepatocyte primary cultures treated with LPS, indicating a direct of effect of LPS on hepatocytes. LPS treatment also decreased the activity of liver microsomes towards chlorpromazine, however, antibody inhibition study revealed that liver CYP4Fs are not the only players in metabolizing chlorpromazine. To study further the underlying mechanism, CYP4F5 gene was isolated, characterized, and the promoter region was defined. ^ Accumulating evidence showed that peroxisome proliferator-activated receptors (PPARs) play an active role in inflammation. To investigate the possible role of PPARα in regulating CYP4F expression by inflammation or by clofibrate treatment, the expressions of two new mouse 4F isoforms were analyzed in PPARα knockout mice upon LPS or clofibrate challenge. A novel induction of CYP4F15 by LPS and clofibrate was observed in kidney, and this effect is totally dependent on the presence of PPARα. Renal CYP4F16 expression was not affected by LPS or clofibrate in both (+/+) and (−/−) mice. In contrast, hepatic expressions of CYP4F15 and CYP4F16 were reduced significantly in (+/+) mice, but much less in (−/−) mice, suggesting that PPARα is partially responsible for this down-regulation. Clofibrate treatment reduced the expression of CYP4F16 in liver, but has no effect on CYP4F15 and PPARα does not have a role in hepatic CYP4F expression regulated by clofibrate. In general, CYP4Fs are regulated in an isoform-, tissue- and species-specific manner. ^ A human CYP4F isoform, CYP4F11, was isolated. The genomic structure was also solved by using database mining and bioinformatics tools. Localization of CYP4F11 to chromosome 19, 16 kb upstream of CYP4F2, suggests that human CYP4F genes may form a cluster on chromosome 19. This novel human 4F is highly expressed in liver, as well as in kidney, heart and skeletal muscle. Further study of the activity and gene regulation on CYP4F11 will provide us more insights into the physiological functions of CYP4F subfamily. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of colon cancer has taken advantage of the development of a model in animals in which tumors in the colon are easily induced by chemical treatment. When 1,2-dimethylhydrazine (DMH) is injected into rats tumor growth is observed in colon in preference to other tissues. This observation led us to investigate the Cytochrome P450 system in colon and its participation in the particular “colon sensitivity” to DMH. It has been established that the Cytochrome P450 system participates in the metabolism of DMH and the methyl carbonium product of Cytochrome P450 activation of DMH is responsible for DNA damage which is considered an initial step to carcinogenesis. The Cytochrome P450 system is a reasonable place to search for an explanation of this organotropic effect of DMH and we feel that the knowledge obtained from this study can take us closer to understanding the development of colonic malignancy. In our study we used a human colon cell line (LS174T) treated with DMH. The Cytochrome P450 system in the cells was manipulated with inducers of different isoforms of Cytochrome P450. The effect of DMH on colon cells was measured by determination of O-6-methylguanine which is a DNA adduct derived from the metabolism of this chemical and is associated with development of tumors. Our results support the hypothesis that Cytochrome P450 plays an important role in the damage to cellular DNA by DMH. This damage is increased after induction of Cytochromes P450 1A1 and 2E1. The effect of inhibition of the methyltransferase and glutathione systems on protection against DMH damage in colon demonstrated the importance of the protective role of the former and the lack of effective protection of the latter system. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CYP4F subfamily comprises a group of enzymes that metabolize LTB4 to biologically less active metabolites. These inactive hydroxy products are incapable of chemotaxis and recruitment of inflammatory cells. This has led to a hypothesis that CYP4Fs may modulate inflammatory conditions serving as a signal of resolution. ^ We investigated the regulation of rat CYP4F gene expression under various inflammatory prompts including a bacterial lipopolysaccharide (LPS) treated model system, controlled traumatic brain injury (TBI) model as well as using direct cytokine challenges. CYP4Fs showed an isoform specific response to LPS. The pro-inflammatory cytokines IL-1β, IL-6 and TNF-α produced an overall inductive CYP4F response whereas IL-10, an anti-inflammatory cytokine, suppressed CYP4F gene expression in primary hepatocytes. The molecular mechanism behind IL-6 mediated CYP4F induction was partially STAT3 dependent. ^ An alternate avenue of triggering the inflammatory cascade is TBI, which is known to cause several secondary effects leading to multiorgan dysfunction syndrome. The results from this study elicited that trauma to the brain can produce acute inflammatory changes in organs distant from the injury site. Local production of LTB4 after CNS injury caused mobilization of inflammatory cells such as neutrophils to the lung. In the resolution phase, CYP4F expression increased with time along with the associated activity causing a decline in LTB4 concentration. This marked a significant reduction in neutrophil recruitment to the lung which led to subsequent recovery and repair. In addition, we showed that CYP4Fs are localized primarily in pulmonary endothelium. We speculate that the temporally regulated LTB4 clearance in the endothelium may be a novel target for treatment of pulmonary inflammation following injury. ^ In humans, several CYP4F isoforms have been identified and shown to metabolize LTB4 and other endogenous eicosanoids. However, the specific activity of the recently cloned human CYP4F11 is unknown. In the final part of this thesis, CYP4F11 protein was expressed in yeast in parallel to CYP4F3A. To our surprise, CYP4F11 displayed a different substrate profile than CYP4F3A. CYP4F3A metabolized eicosanoids while CYP4F11 was a better catalyst for therapeutic drugs. Thus, besides their endogenous function in clearing inflammation, CYP4Fs also may play a part in drug metabolism. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CYP4F enzymes metabolize endogenous molecules including arachidonic acid, leukotrienes and prostaglandins. The involvement of these eisosanoids in inflammation has led to the hypothesis that CYP4Fs may modulate inflammatory conditions after traumatic brain injury (TBI). In rat, TBI elicited changes in mRNA expression of CYP4Fs as a function of time in the cerebrum region. These changes in CYP4F mRNA levels inversely correlated with the cerebral leukotriene B4 (LTB4) level following injury at the same time points. TBI also resulted in changes in CYP4F protein expression and localization around the injury site, where CYP4F1 and CYP4F6 immunoreactivity increased in surrounding astrocytes and CYP4F4 immunoreactivity shifted from endothelia of cerebral vessels to astrocytes. The study with rat primary astrocytes indicated that pro-inflammatory cytokines TNFα and IL-1β could affect the transcription of CYP4Fs to a certain degree, whereas the changing pattern in the primary astrocytes appeared to be different from that in the in vivo TBI model.^ In addition, the regulation of CYP4F genes has been an unsolved issue although factors including cytokines and fatty acids appear to affect CYP4Fs expression in multiple models. In this project, HaCaT cells were used as an in vitro cellular model to define signaling pathways involved in the regulation of human CYP4F genes. Retinoic acids inhibited CYP4F11 expression, whereas cytokines TNFα and IL-1β induced transcription of CYP4F11 in HaCaT cells. The induction of CYP4F11 by both cytokines could be blocked by a JNK specific inhibitor, indicating the involvement of the JNK pathway in the up-regulation of CYP4F11. Retinoic acids are known to function in gene regulation through nuclear receptors RARs and RXRs. The RXR agonist LG268 greatly induced transcription of CYP4F11, whereas RAR agonist TTNPB obviously inhibited CYP4F11 transcription, indicating that the down-regulation of CYP4F11 by retinoic acid was mediated by RARs, and that inhibition of CYP4F11 by retinoic acid may also be related to the competition for RXR receptors. Thus, the CYP4F11 gene is regulated by signaling pathways including the RXR pathway and the JNK pathway. In contrast, the regulation mechanism of other CYP4Fs by retinoic acids appears to be different from that of CYP4F11.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was designed to determine the potential anticarcinogenic activity of naturally occurring coumarins and their mechanism of action. The results indicated that several naturally occurring coumarins including bergamottin, coriandrin, imperatorin, isopimpinellin, and ostruthin, to which humans are routinely exposed in the diet, were effective inhibitors and/or inactivators of CYP1A1-mediated ethoxyresorufin-O-dealkylase (EROD) or CYP2B1-mediated pentoxyresorufin-O-dealkylase (PROD) in mouse liver microsomes. In addition, bergamottin and corandrin were also found to be inhibitors of purified human P450 1A1 in vitro. Further studies with coriandrin revealed that this compound was a mechanism-based inactivator of P450 1A1 and covalently bound to the P450 1A1 apoprotein. In cultured mouse keratinocytes, bergamottin and coriandrin effectively inhibited the B(a) P metabolism and significantly decreased covalent binding of B(a) P and DMBA to keratinocyte DNA and anti-diol-epoxide-DNA adducts derived from both B(a) P and DMBA in keratinocytes. The data from in vivo experiments showed that bergamottin and coriandrin were potent inhibitors of covalent binding of B (a) P to epidermal DNA and the formation of (+) anti BPDE-DNA adduct, whereas imperatorin and isopimpinellin were more potent inhibitors of covalent binding of DMBA to epidermal DNA. The ability of coumarins to inhibit covalent binding of B (a) P to DNA in mouse epidermis was positively correlated with their inhibitory effect P450 1A1 in vitro, while the inhibitory effect of coumarins on covalent binding of DMBA to epidermal DNA was positively correlated with their inhibitory effects on P450 2B1 and negatively to their inhibitory activity toward P450 1A1. The data from tumor experiments indicated that bergamottin, ostruthin, and coriandrin inhibited tumor initiation by B (a) P in a two-stage carcinogenesis protocol. Bergamottin was most effective in this regard and produced a dose dependent inhibition of papilloma formation in these experiments. In addition, imperatorin was an effective inhibitor of skin tumorigenesis induced by DMBA in SENCAR mouse skin using both a two-stage and a complete carcinogenesis protocol. At dose levels higher than those effective against DMBA, imperatorin also inhibited tumor initiation by B (a) P. The results to date demonstrate that several naturally occurring coumarins possess the ability to block tumor initiation and tumorigenesis by PAHs such as B (a) P and DMBA through inhibition of the P450s involved in the metabolic activation of these hydrocarbons. A working model for the involvement of specific P450s in the metabolic activation of these two PAHs was proposed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the fact that Papilio glaucus and Papilio polyxenes share no single hostplant species, both species feed to varying extents on hostplants that contain furanocoumarins. P. glaucus contains two nearly identical genes, CYP6B4v2 and CYP6B5v1, and P. polyxenes contains two related genes, CYP6B1v3 and CYP6B3v2. Except for CYP6B3v2, the substrate specificity of which has not yet been defined, each of the encoded cytochrome P450 monooxygenases (P450s) metabolizes an array of linear furanocoumarins. All four genes are transcriptionally induced in larvae by exposure to the furanocoumarin xanthotoxin; several are also induced by other furanocoumarins. Comparisons of the organizational structures of these genes indicate that all have the same intron/exon arrangement. Sequences in the promoter regions of the P. glaucus CYP6B4v2/CYP6B5v1 genes and the P. polyxenes CYP6B3v2 gene are similar but not identical to the -146 to -97 region of CYP6B1v3 gene, which contains a xanthotoxin-responsive element (XRE-xan) important for basal and xanthotoxin-inducible transcription of CYP6B1v3. Complements of the xenobiotic-responsive element (XRE-AhR) in the dioxin-inducible human and rat CYP1A1 genes also exist in all four promoters, suggesting that these genes may be regulated by dioxin. Antioxidant-responsive elements (AREs) in mouse and rat glutathione S-transferase genes and the Barbie box element (Bar) in the bacterial CYP102 gene exist in the CYP6B1v3, CYP6B4v2, and CYP6B5v1 promoters. Similarities in the protein sequences, intron positions, and xanthotoxin- and xenobiotic-responsive promoter elements indicate that these insect CYP6B genes are derived from a common ancestral gene. Evolutionary comparisons between these P450 genes are the first available for a group of insect genes transcriptionally regulated by hostplant allelochemicals and provide insights into the process by which insects evolve specialized feeding habits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transgenic and gene knockout techniques allow for in vivo study of the consequences of adding or subtracting specific genes. However, in some instances, such as the study of lethal mutations or of the physiological consequences of changing gene expression, turning on and off an introduced gene at will would be advantageous. We have used cytochrome p450 1A1 promoter to drive expression of the human apolipoprotein E (apoE) gene in transgenic mice. In six independent lines, robust expression of the transgene depended upon injection of the inducer beta-naphthoflavone, whereas the seventh line had high basal expression that was augmented further by the inducer. The low level of basal expression in an inducer-dependent line was confirmed upon breeding the transgene onto the hypercholesterolemic apoE-deficient background. In the basal state transgene expression was physiologically insignificant, as these mice were as hypercholesterolemic as their nontransgenic apoE-deficient littermates. When injected with the inducer, plasma cholesterol levels of the transgenic mice decreased dramatically as apoE expression was induced to yield greater than physiological levels in plasma. The inducer could pass transplacentally from an injected mother to her fetuses with concomitant induction of fetal transgene mRNA. Inducer could also pass via breast milk from an injected mother to her suckling neonatal pups, giving rise to the induction of human apoE in neonate plasma. These finding suggest a strategy to temporarily ameliorate genetic deficiencies that would otherwise lead to fetal or neonatal lethality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of the microsomal P450 cytochromes, the ethanol-inducible isoform, P450 2E1, is believed to be predominant in leading to oxidative damage, including the generation of radical species that contribute to lipid peroxidation, and in the reductive beta-scission of lipid hydroperoxides to give hydrocarbons and aldehydes. In the present study, the sensitivity of a series of P450s to trans-4-hydroxy-2-nonenal (HNE), a known toxic product of membrane lipid peroxidation, was determined. After incubation of a purified cytochrome with HNE, the other components of the reconstituted system (NADPH-cytochrome P450 reductase, phosphatidylcholine, and NADPH) were added, and the rate of oxygenation of 1-phenylethanol to yield acetophenone was assayed. Inactivation occurs in a time-dependent and HNE concentration-dependent manner, with P450s 2E1 and 1A1 being the most sensitive, followed by isoforms 1A2, 3A6, and 2B4. At an HNE concentration of 0.24 microM, which was close to the micromolar concentration of the enzyme, four of the isoforms were significantly inhibited, but not P450 2B4. In other experiments, the reductase was shown to be only relatively weakly inactivated by HNE. P450s 2E1 and 2B4 in microsomal membranes from animals induced with acetone or phenobarbital, respectively, are as readily inhibited as the purified forms. Evidence was obtained that the P450 heme is apparently not altered and the sulfur ligand is not displaced, that substrate protects against HNE, and that the inactivation is reversed upon dialysis. Higher levels of reductase or substrate do not restore the activity of inhibited P450 in the catalytic assay. Our results suggest that the observed inhibition of the various P450s is of sufficient magnitude to cause significant changes in the metabolism of foreign compounds such as drugs and chemical carcinogens by the P450 oxygenase system at HNE concentrations that occur in biological membranes. In view of the known activities of P450 2E1 in generating lipid hydroperoxides and in their beta-scission, its inhibition by this product of membrane peroxidation may provide a negative regulatory function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (K (M)=1.84 +/- 0.09 mM and k (cat) of 2.98 +/- 0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (K (M)=0.65 +/- 0.08 mM and k (cat) of 0.95 +/- 0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coordination of the functional activities of intestinal CYP3A4 and P-gp in limiting the absorption of xenobiotics in Caco-2 cells was investigated. Growing Caco-2 cells were exposed to increasing concentrations of doxorubicin (1-2 μM) in plastic flasks to encourage a subpopulation of cells, that displayed an intrinsically higher multidrug resistance (mdr) phenotype than the parent cells, to survive and grow. Doxorubicin-exposed (hereinafter referred to as type I cells) and nonexposed Caco-2 cells (parent cells) on collagen-coated inserts were also treated with either 0 (control) or 0.25 μM 1α,25-dihydroxyvitamin D3 to promote cellular CYP3A4 expression. Increased P-gp protein expression, as detected by Western blotting, was noted in type I cells (213±54.35%) compared to that of parent cells (100±6.05%). Furthermore, they retained significantly less [3H]vincristine sulphate (p<0.05), a P-gp substrate, after efflux (272.89±11.86 fmol/mg protein) than the parent cells (381.39±61.82 fmol/mg protein). The expression of CYP3A4 in parental cells after 1α,25-dihydroxyvitamin D3 treatment was quantified to be 76.2±7.6 pmol/mg protein and comparable with that found in human jejunal enterocytes (70.0±20.0 pmol/mg protein). Type I cells, however, expressed a very low quantity of CYP3A4 both before and after the treatment that was beyond the minimum detection limit of Western blotting. Functionally, the rates of 1-hydroxylation of midazolam by CYP3A for both cell types ranged from 257.0±20.0 to 1057.0±46.0 pmol/min/mg protein. Type I cells, although having a higher P-gp expression and activity comparatively, metabolized midazolam less extensively than the parent cells. The results suggested that there were noncoordinated functional activities of intestinal CYP3A4 and P-gp in Caco-2 cells, although they both functioned independently to minimize intestinal epithelial absorption of xenobiotics. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The passage number and origin of two populations of Caco-2 cells influence their enterocyte-like characteristics. Caco-2 cells of passage number >90 from Novartis pharmaceutical company possess higher levels of expression of alkaline phosphatase and P-glycoprotein and a greater cellular uptake of Gly-1.-Pro than those of passage number <40 from the American Type Tissue Culture collection. High P-gp expressing Caco-2 cells have been developed through stepwise selection of the cells with doxonibicin. This newly-developed cell line (hereafter referred to as Type I) possesses approximately twice as much P-gp protein than non-exposed cells, restricts the transepithelial transport of vincristine in the apical-to-basolateral direction whilst facilitating its transport in the reverse direction and accumulates less vincristine than non-exposed cells. There is no apparent evidence of the co-existence of the multidrug resistance protein (MIT) in Type I cells to account for the above-listed observations. Stopping the exposure for more than 28 days decreases the P-gp protein expression in previously doxorubicin-exposed Type I Caco-2 cells and reduces the magnitude of vincristine transepithelial fluxes in both directions to the levels that are almost similar to those of non-exposed cells. Exposing Caco-2 cells to 0.25 JAM la, 25-dihydroxyvitamin D3 induces their expression of cytochrome P450 3A4 protein to the level that is equivalent to that from isolated human jejunal cells. Under the same treatment, doxorubiein-exposed (Type I) cells metabolise naidazolam poorly and less extensively compared to non-exposed cells, suggesting that there is no such co-regulation of P-gp and CYP3A4 in Caco-2 cells. However, there is evidence which suggests CYP3A metabolises mida_zolam into 1- and 4-hydroxymidazolam, the latter may possibly be a P-gp substrate and is transported extracellularly by P-gp, supporting the hypothesis of P-gp-CYP3A4 synergistic roles in keeping xenobiotics out of the body. Doxoru.bicin-exposed (Type I) cells are less effective in translocating L-proline and glycyl-L-proline across the cell mono layers.