998 resultados para Human Blink Reflex
Resumo:
PURPOSE. To better understand the relative contributions of rod, cone, and melanopsin to the human pupillary light reflex (PLR) and to determine the optimal conditions for assessing the health of the rod, cone, and melanopsin pathways with a relatively brief clinical protocol. METHODS. PLR was measured with an eye tracker, and stimuli were controlled with a Ganzfeld system. In experiment 1, 2.5 log cd/m(2) red (640 +/- 10 nm) and blue (467 +/- 17 nm) stimuli of various durations were presented after dark adaptation. In experiments 2 and 3, 1-second red and blue stimuli were presented at different intensity levels in the dark (experiment 2) or on a 0.78 log cd/m(2) blue background (experiment 3). Based on the results of experiments 1 to 3, a clinical protocol was designed and tested on healthy control subjects and patients with retinitis pigmentosa and Leber`s congenital amaurosis. RESULTS. The duration for producing the optimal melanopsin-driven sustained pupil response after termination of an intense blue stimulus was 1 second. PLR rod-and melanopsin-driven components are best studied with low-and high-intensity flashes, respectively, presented in the dark (experiment 2). A blue background suppressed rod and melanopsin responses, making it easy to assess the cone contribution with a red flash (experiment 3). With the clinical protocol, robust melanopsin responses could be seen in patients with few or no contributions from the rods and cones. CONCLUSIONS. It is possible to assess the rod, cone, and melanopsin contributions to the PLR with blue flashes at two or three intensity levels in the dark and one red flash on a blue background. (Invest Ophthalmol Vis Sci. 2011; 52: 6624-6635) DOI: 10.1167/iovs.11-7586
Resumo:
Assessments of spinal nociceptive withdrawal reflexes can be used in human research both to evaluate the effect of analgesics and explore pain mechanisms related to sensitization. Before the reflex can be used as a clinical tool, normative values need to be determined in large scale studies. The aim of this study was to determine the reference values of spinal nociceptive reflexes and subjective pain thresholds (to single and repeated stimulation), and of the area of the reflex receptive fields (RRF) in 300 pain-free volunteers. The influences of gender, age, height, weight, body-mass index (BMI), body side of testing, depression, anxiety, catastrophizing and parameters of Short-Form 36 (SF-36) were analyzed by multiple regressions. The 95% confidence intervals were determined for all the tests as normative values. Age had a statistically and quantitatively significant impact on the subjective pain threshold to single stimuli. The reflex threshold to single stimulus was lower on the dominant compared to the non-dominant side. Depression had a negative impact on the subjective pain threshold to single stimuli. All the other analyses either did not reveal statistical significance or displayed quantitatively insignificant correlations. In conclusion, normative values of parameters related to the spinal nociceptive reflex were determined. This allows their clinical application for assessing central hyperexcitability in individual patients. The parameters investigated explore different aspects of sensitization processes that are largely independent of demographic characteristics, cognitive and affective factors.
Resumo:
Widespread central hypersensitivity is present in chronic pain and contributes to pain and disability. According to animal studies, expansion of receptive fields of spinal cord neurons is involved in central hypersensitivity. We recently developed a method to quantify nociceptive receptive fields in humans using spinal withdrawal reflexes. Here we hypothesized that patients with chronic pelvic pain display enlarged reflex receptive fields. Secondary endpoints were subjective pain thresholds and nociceptive withdrawal reflex thresholds after single and repeated (temporal summation) electrical stimulation. 20 patients and 25 pain-free subjects were tested. Electrical stimuli were applied to 10 sites on the foot sole for evoking reflexes in the tibialis anterior muscle. The reflex receptive field was defined as the area of the foot (fraction of the foot sole) from which a muscle contraction was evoked. For the secondary endpoints, the stimuli were applied to the cutaneous innervation area of the sural nerve. Medians (25-75 percentiles) of fraction of the foot sole in patients and controls were 0.48 (0.38-0.54) and 0.33 (0.27-0.39), respectively (P=0.008). Pain and reflex thresholds after sural nerve stimulation were significantly lower in patients than in controls (P<0.001 for all measurements). This study provides for the first time evidence for widespread expansion of reflex receptive fields in chronic pain patients. It thereby identifies a mechanism involved in central hypersensitivity in human chronic pain. Reverting the expansion of nociceptive receptive fields and exploring the prognostic meaning of this phenomenon may become future targets of clinical research.
Resumo:
A method for quantifying nociceptive withdrawal reflex receptive fields in human volunteers and patients is described. The reflex receptive field (RRF) for a specific muscle denotes the cutaneous area from which a muscle contraction can be evoked by a nociceptive stimulus. The method is based on random stimulations presented in a blinded sequence to 10 stimulation sites. The sensitivity map is derived by interpolating the reflex responses evoked from the 10 sites. A set of features describing the size and location of the RRF is presented based on statistical analysis of the sensitivity map within every subject. The features include RRF area, volume, peak location and center of gravity. The method was applied to 30 healthy volunteers. Electrical stimuli were applied to the sole of the foot evoking reflexes in the ankle flexor tibialis anterior. The RRF area covered a fraction of 0.57+/-0.06 (S.E.M.) of the foot and was located on the medial, distal part of the sole of the foot. An intramuscular injection into flexor digitorum brevis of capsaicin was performed in one spinal cord injured subject to attempt modulation of the reflex receptive field. The RRF area, RRF volume and location of the peak reflex response appear to be the most sensitive measures for detecting modulation of spinal nociceptive processing. This new method has important potential applications for exploring aspects of central plasticity in volunteers and patients. It may be utilized as a new diagnostic tool for central hypersensitivity and quantification of therapeutic interventions.
Resumo:
Video-oculography devices are now used to quantify the vestibulo-ocular reflex (VOR) at the bedside using the head impulse test (HIT). Little is known about the impact of disruptive phenomena (e.g. corrective saccades, nystagmus, fixation losses, eye-blink artifacts) on quantitative VOR assessment in acute vertigo. This study systematically characterized the frequency, nature, and impact of artifacts on HIT VOR measures. From a prospective study of 26 patients with acute vestibular syndrome (16 vestibular neuritis, 10 stroke), we classified findings using a structured coding manual. Of 1,358 individual HIT traces, 72% had abnormal disruptive saccades, 44% had at least one artifact, and 42% were uninterpretable. Physicians using quantitative recording devices to measure head impulse VOR responses for clinical diagnosis should be aware of the potential impact of disruptive eye movements and measurement artifacts.
Resumo:
Federal Aviation Administration, Washington, D.C.
Resumo:
"Literature on the 'psychogalvanic reflex' and allied phenomena": p. 39.
Resumo:
The present research investigated the effect of performance feedback on the modulation of the acoustic startle reflex in a Go/NoGo reaction time task. Experiment 1 (n = 120) crossed warning stimulus modality (acoustic, visual, and tactile) with the provision of feedback in a between subject design. Provision of performance feedback increased the number of errors committed and reduced reaction time, but did not affect blink modulation significantly. Attentional blink latency and magnitude modulation was larger during acoustic than during visual and larger during visual than during tactile warning stimuli. In comparison to control blinks, latency shortening was significant in all modality conditions whereas magnitude facilitation was not significant during tactile warning stimuli. Experiment 2 (n = 80) employed visual warning stimuli only and crossed the provision of feedback with task difficulty. Feedback and difficulty affected accuracy and reaction time. Whereas blink latency shortening was not affected, blink magnitude modulation was smallest in the Easy/No Feedback and the Difficult/Feedback conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Previous studies found larger attentional modulation of acoustic blinks during task-relevant than during task-irrelevant acoustic or visual, but not tactile, lead stimuli. Moreover, blink modulation was larger overall during acoustic lead stimuli. The present experiment investigated whether these results reflect modality specificity of attentional blink modulation or effects of continuous stimulation. Participants performed a discrimination and counting task with acoustic, visual, or tactile lead stimuli. Stimuli were presented Sustained or consisted of two short discrete stimuli. The sustained condition replicated previous results. In the discrete condition, blinks were larger during task-relevant than during task-irrelevant stimuli in all groups regardless of lead stimulus modality. Thus, previous results that seemed consistent with modality-specific accounts of attentional blink modulation reflect effects of continuous stimulus input.
Resumo:
The effects of unconditional stimulus (US) valence (aversive electro-tactile stimulus vs. nonaversive imperative stimulus of a RT task) and conditioning paradigm (delay vs. trace) on affective learning as indexed by verbal ratings of conditional stimulus (CS) pleasantness and blink startle modulation and on relational learning as indexed by electrodermal responses were investigated. Affective learning was not affected by the conditioning paradigm; however, electrodermal responses and blink latency shortening indicated delayed learning in the trace procedure. Changes in rated CS pleasantness were found with the aversive US, but not with the non-aversive US. Differential conditioning as indexed by electrodermal responses and startle modulation was found regardless of US valence. The finding of significant differential blink modulation and electrodermal responding in the absence of a change in rated CS pleasantness as a result of conditioning with a non-aversive US was replicated in a second experiment. These results seem to indicate that startle modulation during conditioning is mediated by the arousal level of the anticipated US, rather than by the valence of the CS. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
The eye-blink startle reflex can be modulated by attentional and emotional processes. The reflex is facilitated during stimuli that engage attention. A linear pattern of emotional modulation has also been consistently demonstrated: the reflex is facilitated during unpleasant stimuli and attenuated during pleasant stimuli. However, during anticipation of pleasant or unpleasant stimuli it is unclear whether emotion or attention drives startle reflex modulation. This study used a differential learning procedure to investigate whether startle modulation during anticipation of a salient stimulus reflected emotional or attentional processes. In acquisition, a CS+ was paired with a pleasant or unpleasant US and a CS- was presented alone. In extinction, blink startle magnitude was measured during CS+ and CS-. Post-acquisition valence ratings and affective priming showed that CS+ had acquired the same affective value as the pleasant or unpleasant US with which it was paired. No differences in modulation of blink startle reflexes during pleasant CS+ and unpleasant CS+ were found throughout extinction. Blink startle facilitation occurred during CS+ but not CS- across the first third of extinction. Thus, attentional rather than emotional processes appeared to facilitate blink startle during anticipation of salient stimuli.
Resumo:
During the 1830s, Marshall Hall carried out innumerable experiments on a great variety of animals to establish the concept of a ‘reflex arc’. In France F.L.Goltz showed that decerebrate frogs were still capable of complex behaviours. Thomas Laycock in England and Ivan Sechenov in Russia sought to apply the reflex idea to the brain. This paper follows the debate in the periodical literature of mid-Victorian England and discusses the contributions of WB Carpenter, Herbert Spencer, TH Huxley, W Clifford and others. The previous outing of this issue in the post-Cartesian seventeenth century had been largely suppressed by ecclesiastical authority. In the nineteenth century ecclesiastical power had waned, at least in England, and the debate could take a more open form. As neurophysiology and behavioural science developed, with the widespread acceptance of Darwinian evolution, it became more and more difficult to deny that brain and mind were part of the natural world and subject to the usual laws of cause and effect. This, of course, had powerful implications for the human self-image and for jurisprudence. These implications are still with us and the work of neurophysiologists such as Benjamin Libet have only reinforced them. Should humans be regarded as ‘automata’ and, if so, what becomes of ‘free will’, ‘responsibility’, and the rule of law? The Victorian debate is still useful and relevant.
Resumo:
This study aimed at evaluating whether human papillomavirus (HPV) groups and E6/E7 mRNA of HPV 16, 18, 31, 33, and 45 are prognostic of cervical intraepithelial neoplasia (CIN) 2 outcome in women with a cervical smear showing a low-grade squamous intraepithelial lesion (LSIL). This cohort study included women with biopsy-confirmed CIN 2 who were followed up for 12 months, with cervical smear and colposcopy performed every three months. Women with a negative or low-risk HPV status showed 100% CIN 2 regression. The CIN 2 regression rates at the 12-month follow-up were 69.4% for women with alpha-9 HPV versus 91.7% for other HPV species or HPV-negative status (P < 0.05). For women with HPV 16, the CIN 2 regression rate at the 12-month follow-up was 61.4% versus 89.5% for other HPV types or HPV-negative status (P < 0.05). The CIN 2 regression rate was 68.3% for women who tested positive for HPV E6/E7 mRNA versus 82.0% for the negative results, but this difference was not statistically significant. The expectant management for women with biopsy-confirmed CIN 2 and previous cytological tests showing LSIL exhibited a very high rate of spontaneous regression. HPV 16 is associated with a higher CIN 2 progression rate than other HPV infections. HPV E6/E7 mRNA is not a prognostic marker of the CIN 2 clinical outcome, although this analysis cannot be considered conclusive. Given the small sample size, this study could be considered a pilot for future larger studies on the role of predictive markers of CIN 2 evolution.
Resumo:
Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.
Resumo:
Human bocavirus 1 (HBoV1) is associated with respiratory infections worldwide, mainly in children. Similar to other parvoviruses, it is believed that HBoV1 can persist for long periods of time in humans, probably through maintaining concatemers of the virus single-stranded DNA genome in the nuclei of infected cells. Recently, HBoV-1 was detected in high rates in adenoid and palatine tonsils samples from patients with chronic adenotonsillar diseases, but nothing is known about the virus replication levels in those tissues. A 3-year prospective hospital-based study was conducted to detect and quantify HBoV1 DNA and mRNAs in samples of the adenoids (AD), palatine tonsils (PT), nasopharyngeal secretions (NPS), and peripheral blood (PB) from patients undergoing tonsillectomy for tonsillar hypertrophy or recurrent tonsillitis. HBoV1 was detected in 25.3% of the AD samples, while the rates of detection in the PT, NPS, and PB samples were 7.2%, 10.5%, and 1.7%, respectively. The viral loads were higher in AD samples, and 27.3% of the patients with HBoV had mRNA detectable in this tissue. High viral loads and detectable mRNA in the AD were associated with HBoV1 detection in the other sample sites. The adenoids are an important site of HBoV1 replication and persistence in children with tonsillar hypertrophy. The adenoids contain high HBoV1 loads and are frequently positive for HBoV mRNA, and this is associated with the detection of HBoV1 in secretions.