995 resultados para Hot working


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An AlCrCuNiFeCo high entropy alloy (HEA), which has simple face centered cubic (FCC) and body centered cubic (BCC) solid solution phases as the microstructural constituents, was processed and its high temperature deformation behaviour was examined as a function of temperature (700-1030 degrees C) and strain rate (10(-3)-10(-1) s(-1)), so as to identify the optimum thermo-mechanical processing (TMP) conditions for hot working of this alloy. For this purpose, power dissipation efficiency and deformation instability maps utilizing that the dynamic materials model pioneered by Prasad and co-workers have been generated and examined. Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate two distinct deformation domains within the range of experimental conditions examined, with the combination of 1000 degrees C/10(-3) s(-1) and 1030 degrees C/10(-2) s(-1) being the optimum for hot working. Flow instabilities associated with adiabatic shear banding, or localized plastic flow, and or cracking were found for 700-730 degrees C/10(-3)-10(-1) s(-1) and 750-860 degrees C/10(-1.4)-10(-1) s(-1) combinations. A constitutive equation that describes the flow stress of AlCrCuNiFeCo alloy as a function of strain rate and deformation temperature was also determined. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The crystallographic rotation field for deformation in torsion is such that it is possible for orientations close to stable orientations to rotate away from the stable orientation. A Taylor type model was used to demonstrate that this phenomenon has the potential to transform randomly generated low-angle boundaries into high-angle boundaries. After imposing an equivalent strain of 1.2, up to 40% of the simulated boundaries displayed a disorientation in excess of 15°. These high-angle boundaries were characterised by a disorientation axis close to parallel with the sample radial direction. A series of hot torsion tests was carried out on 1050 aluminium to seek evidence for boundaries formed by this mechanism. A number of deformation-induced high-angle boundaries were identified. Many of these boundaries showed disorientation axes and rotation senses similar to those seen in the simulations. Between 10% and 25% of all the high-angle boundary present in samples twisted to equivalent strains between 2 and 7 could be attributed to the present mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The microstructures of magnesium AZ31 are examined following hot compression testing and annealing. The grain size, fraction dynamically recrystallized and, in a couple of cases, the crystallographic texture are reported. The progress of dynamic recrystallization and the recrystallized grain size were sensitive to processing conditions, as expected. This effect was more marked in the former than in the latter, compared to other metals. It was also found that, for structures containing between 80 and 95% dynamic recrystallization, abnormal grain growth occurred during annealing. Irrespective of the whether or not abnormal grain growth occurred, the annealing step weakened the crystallographic texture.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The evolution of structure during the hot working of an austenitic Ni-30%Fe alloy is studied using EBSD analysis of samples tested in torsion. A microstructural map in temperature-strain space that plots grain size, cell size, fracture and dynamic recrystallization is presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The crystallographic rotation field for deformation in torsion is such that it is possible for orientations close to stable orientations to rotate away from the stable orientation. A Taylor type model was used to demonstrate that this phenomenon has the potential to transform randomly generated low-angle boundaries into high-angle boundaries. After imposing an equivalent strain of 1.2, up to 40% of the simulated boundaries displayed a disorientation in excess of 15°. These high-angle boundaries were characterised by a disorientation axis close to parallel with the sample radial direction. A series of hot torsion tests was carried out on 1050 aluminium to seek evidence for boundaries formed by this mechanism. A number of deformation-induced high-angle boundaries were identified. Many of these boundaries showed disorientation axes and rotation senses similar to those seen in the simulations. Between 10% and 25% of all the high-angle boundary present in samples twisted to equivalent strains between 2 and 7 could be attributed to the present mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present work examines the microstructure that evolves during the annealing of hot worked magnesium alloy AZ31. First, the influences of deformation and annealing conditions on the microstructures are assessed. It is found that the annealing behaviour is consistent with what one would expect for a recrystallization type reaction. Whilst both the deformation and annealing conditions influence the time required to reach a stable annealed microstructure, the grain size attained is governed solely by the prior deformation conditions employed. At the highest temperature and strain rate examined, the rate of recrystallization is quite high and the grain size was found to be approximately double when annealed for only 1 s prior to quenching. Finally, semi-empirical equations are developed to predict the kinetics of recrystallization, as well as the evolution of grain size, during annealing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The behaviour of steel undergoing hot deformation was examined with the aim of better understanding the softening mechanisms operating during industrial hot strip rolling. These softening mechanisms can significantly influence the deformation force required to attain a given reduction in thickness, and this work answered a number of questions with regard to the transition between softening mechanisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This project aimed to model the microstructure evolution during and following hot deformation using a cellular automaton approach. The flow curves, softening kinetics and final microstructures were used as the input data for the post-deformation simulation to elucidate the effect of dynamic recrystallization on the post-deformation softening.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present work examines the microstructure that evolves during the hot deformation and subsequent annealing of magnesium alloy AZ31. In particular, the role of strain on the progression of dynamic recrystallization (DRX) and post-deformation recrystallization is investigated. It is found that the grain size developed after post-deformation recrystallization is larger when the deformation strain, and hence the degree of DRX, is low (for strains up to 0.4). Also, the kinetics of post-deformation recrystallization are found to be independent of strain for strain values of 0.4 and above. Whilst increasing strain alters the texture of the un-recrystallized microstructure (for the deformation mode examined), the texture does not change significantly during post-deformation recrystallization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The alloy, Ti-6Al-4V is an alpha + beta Ti alloy that has large prior beta grain size (similar to 2 mm) in the as cast state. Minor addition of B (about 0.1 wt.%) to it refines the grain size significantly as well as produces in-situ TiB needles. The role played by these microstructural modifications on high temperature deformation processing maps of B-modified Ti64 alloys is examined in this paper.Power dissipation efficiency and instability maps have been generated within the temperature range of 750-1000 degrees C and strain rate range of 10(-3)-10(+1) s(-1). Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate four distinct deformation domains within the range of experimental conditions examined, with the combination of 900-1000 degrees C and 10(-3)-10(-2) s(-1) being the optimum for hot working. In that zone, dynamic globularization of alpha laths is the principle deformation mechanism. The marked reduction in the prior beta grain size, achieved with the addition of B, does not appear to alter this domain markedly. The other domains, with negative values of instability parameter, show undesirable microstructural features such as extensive kinking/bending of alpha laths and breaking of beta laths for Ti64-0.0B as well as generation of voids and cracks in the matrix and TiB needles in the B-modified alloys. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ti-6Al-4V is widely used to prepare biomedical implant for orthopaedic and dental applications, but it is an expensive choice relative to other implant materials such as stainless steels and Co-Cr alloys, in large part due to the high manufacturing cost. Adding boron to refine the as cast microstructure of Ti-6Al-4V can eliminate the need for extensive hot working and thereby reduce processing costs. The effect of 0.1 wt-% boron addition and the choice of processing route (forging or extrusion) was studied in the context of potential biomedical applications. Corrosion tests in simulated body fluid indicated that the presence of boron increased the corrosion rate of Ti-6Al-4V and that the increase was higher for forged alloys than for extruded alloys. Boron addition and processing route were found to have a minimal effect on the viability of osteoblasts on the alloy surfaces. It is concluded that the addition of boron could offer advantages during the processing of Ti-6Al-4V for biomedical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hot deformation behavior of Nb-1 wt.%Zr alloy was studied using uniaxial compression tests carried out in vacuum to a true strain of 0.6 in the temperature range of 900 to 1700 degrees C and the strain rate range of 3 x 10(-3) to 10 s(-1). The optimum regime of hot workability of Nb-1Zr alloy was determined from the strain rate sensitivity (m) contour plots. A high m of about 02 was obtained in the temperature and strain rate range of 1200-1500 degrees C and 10(-3) to 10(-1) s(-1) and 1600-1700 degrees C and 10(-1) to 1 s(-1). Microstructure of the deformed samples showed features of dynamic recrystallization within the high strain rate sensitivity domain. Compared to the study on Nb-1Zr-0.1C alloy, Nb-1Zr showed a lower flow stress and an optimum hot working domain at lower temperatures. In the 1500 to 1700 degrees C range the apparent activation energy of deformation for Nb-1Zr was 259 kJ mol(-1), the stress exponent 5, and the activation volume about 200 to 700 b(3). (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work explores the potential of semi-solid heat treatment technique by elucidating its effect on the plastic behavior of 304L SS in hot working domain. To accomplish this objective, hot isothermal compression tests on 304L SS specimens with semi-solid heat treatment and conventional annealing heat treatment have been carried out within a temperature range of 1273-1473 K and strain rates ranging from 0.01 to 1 s(-1). The dynamic flow behavior of this steel in its conventional heat-treated condition and semi-solid heat-treated condition has been characterized in terms of strain hardening, temperature softening, strain rate hardening, and dynamic flow softening. Extensive microstructural investigation has been carried out to corroborate the results obtained from the analysis of flow behavior. Detailed analysis of the results demonstrates that semi-solid heat treatment moderates work hardening, strain rate hardening, and temperature sensitivity of 304L SS, which is favorable for hot deformation. The post-deformation hardness values of semi-solid heat-treated steel and conventionally heat-treated steel were found to remain similar despite the pre-deformation heat treatment conditions. The results obtained demonstrate the potential of semi-solid heat treatment as a pre-deformation heat treatment step to effectively reduce the strength of the material to facilitate easier deformation without affecting the post-deformation properties of the steel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of hot working flow stress with strain is examined in torsion, uniaxial compression and channel die compression. The flow stress was found to be strongly dependent on texture and deformation mode. At low strains this dependency accounted for a difference in flow stress of up to a factor of two. At higher strains the influence of texture and deformation mode was less marked. The stresses corresponding to an equivalent strain of 0.5 were modelled using a power law expression with an activation energy of 147 kJ/mol and a strain rate exponent of 0.15. The influence of texture and deformation mode on flow stress is rationalised in terms of the influence of prismatic slip, twinning and dynamic recrystallisation on deformation stress and structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnesium alloys are generally found to be slower to extrude than aluminum alloys; however, limited quantitative comparisons of the actual operating windows have been published. In this work, the extrusion limits are determined for a series of commercial magnesium alloys (M1, ZM21, AZ31, AZ61, and ZK60). These are compared with the limits established for aluminum alloy AA6063. The maximum extrusion speed of alloy M1 is shown to be similar to AA6063. Alloys ZM21, AZ31, ZK60, and AZ61 exhibit maximum extrusion speeds 44, 18, 4, and 3 pct, respectively, of the maximum measured for AA6063. For AZ31, the maximum extrusion speed is increased by 22 pct after homogenization and by 64 pct for repeat extrusions. The variation in the extrusion limits with changing alloy content is rationalized in terms of differences in the hot working flow stress and solidus temperature.