994 resultados para Hot compression


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Processing maps for hot working of stainless steel of type AISI 304L have been developed on the basis of the flow stress data generated by compression and torsion in the temperature range 600–1200 °C and strain rate range 0.1–100 s−1. The efficiency of power dissipation given by 2m/(m+1) where m is the strain rate sensitivity is plotted as a function of temperature and strain rate to obtain a processing map, which is interpreted on the basis of the Dynamic Materials Model. The maps obtained by compression as well as torsion exhibited a domain of dynamic recrystallization with its peak efficiency occurring at 1200 °C and 0.1 s−1. These are the optimum hot-working parameters which may be obtained by either of the test techniques. The peak efficiency for the dynamic recrystallization is apparently higher (64%) than that obtained in constant-true-strain-rate compression (41%) and the difference in explained on the basis of strain rate variations occurring across the section of solid torsion bar. A region of flow instability has occurred at lower temperatures (below 1000 °C) and higher strain rates (above 1 s−1) and is wider in torsion than in compression. To achieve complete microstructure control in a component, the state of stress will have to be considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deformation instabilities, such as shear cracking and grain boundary cavitation, which are observed in the secondary tensile region of Ti-6Al-4V alloy during compressive deformation in the (+)-phase field, do not form in Ti-6Al-4V-0.1B alloy when processed under the same conditions. This has been attributed to the microstructural modifications, e.g. the absence of grain boundary and adjacent grain boundary retained layers and a lower proportion of 90(o)-misoriented -colonies that occur with boron addition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of physically-based models of microstructural evolution during hot deformation of metallic materials requires knowledge of the grain/subgrain structure and crystallographic texture characteristics over a range of processing conditions. A Fe-30wt%Ni based alloy, retaining a stable austenitic structure at room temperature, was used for modelling the development of austenite microstructure during hot deformation of conventional carbon-manganese steels. A series of plane strain compression tests was carried out at a temperature of 950 °C and strain rates of 10 s-1 and 0.1 s-1 to several strain levels. Evolution of the grain/subgrain structure and crystallographic texture was characterised in detail using quantitative light microscopy and highresolution electron backscatter diffraction. Crystallographic texture characteristics were determined separately for the observed deformed and recrystallised grains. The subgrain geometry and dimensions together with the misorientation vectors across sub-boundaries were quantified in detail across large sample areas and the orientation dependence of these characteristics was determined. Formation mechanisms of the recrystallised grains were established in relation to the deformation microstructure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work was aimed at a detailed investigation of the orientation dependence of the microstructure characteristics in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 1198 K (925 °C) at a strain rate of 1 s−1 to several strain levels up to 1.0. The quantification of the substructure evolution as a function of strain was performed for the stable 〈011〉 oriented grains. Other grain orientations were also investigated in detail at a strain of 0.2. The 〈110〉 oriented grains contained self-screening arrays of “microbands” (MBs) aligned with high Schmid factor {111} slip planes. The MB crystallographic alignment was largely maintained up to a strain of 1.0, which suggests that the corresponding boundaries kept continuously rearranging themselves during straining and did not follow the sample shape change. The mean MB spacing decreased and misorientation angle increased with strain towards saturation, indicating the operation of the “repolygonization” dynamic recovery mechanism. The non-〈011〉 oriented grains displayed a strong tendency to split during deformation into deformation bands having alternating orientations and being mutually rotated by large angles. The bands were separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent times, light gauge cold-formed steel sections have been used extensively since they have a very high strength to weight ratio compared with thicker hot-rolled steel sections. However, they are susceptible to various buckling modes including a distortional mode and hence show complex behaviour under fire conditions. Therefore a research project based on detailed experimental studies was undertaken to investigate the distortional buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. More than 150 axial compression tests were undertaken at uniform ambient and elevated temperatures. Two types of cross sections were selected with nominal thicknesses of 0.60, 0.80, and 0.95 mm. Both low (G250) and high (G550) strength steels were used. Distortional buckling tests were conducted at six different temperatures in the range of 20 to 800°C. The ultimate loads of compression members subject to distortional buckling were then used to review the adequacy of the current design rules at ambient and elevated temperatures. This paper presents the details of this experimental study and the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current design standards do not provide adequate guidelines for the fire design of cold-formed steel compression members subject to flexural-torsional buckling. Eurocode 3 Part 1.2 (2005) recommends the same fire design guidelines for both hot-rolled and cold-formed steel compression members subject to flexural-torsional buckling although considerable behavioural differences exist between cold-formed and hot-rolled steel members. Past research has recommended the use of ambient temperature cold-formed steel design rules for the fire design of cold-formed steel compression members provided appropriately reduced mechanical properties are used at elevated temperatures. To assess the accuracy of flexural-torsional buckling design rules in both ambient temperature cold-formed steel design and fire design standards, an experimental study of slender cold-formed steel compression members was undertaken at both ambient and elevated temperatures. This paper presents the details of this experimental study, its results, and their comparison with the predictions from the current design rules. It was found that the current ambient temperature design rules are conservative while the fire design rules are overly conservative. Suitable recommendations have been made in relation to the currently available design rules for flexural-torsional buckling including methods of improvement. Most importantly, this paper has addressed the lack of experimental results for slender cold-formed steel columns at elevated temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regional metamorphic belts provide important constraints on the plate tectonic architecture of orogens. We report here a detailed petrologic examination of the sapphirine-bearing ultra-high temperature (UHT) granulites from the Jining Complex within the Khondalite Belt of the North China Craton (NCC). These granulites carry diagnostic UHT assemblages and their microstructures provide robust evidence to trace the prograde, peak and retrograde metamorphic evolution. The P–T conditions of the granulites estimated from XMgGrt(Mg/Fe + Mg) − XMgSpr isopleth calculations indicate temperature above 970 °C and pressures close to 7 kbar. We present phase diagrams based on thermodynamic computations to evaluate the mineral assemblages and microstructures and trace the metamorphic trajectory of the rocks. The evolution from Spl–Qtz–Ilm–Crd–Grt–Sil to Spr–Qtz–Crd–Opx–Ilm marks the prograde stage. The Spl–Qtz assemblage appears on the low-pressure side of the P–T space with Spr–Qtz stable at the high-pressure side, possibly representing an increase in pressure corresponding to compression. The spectacular development of sapphirine rims around spinel enclosed in quartz supports this inference. An evaluation of the key UHT assemblages based on model proportion calculation suggests a counterclockwise P–T path. With few exceptions, granulite-facies rocks developed along collisional metamorphic zones have generally been characterized by clockwise exhumation trajectories. Recent evaluation of the P–T paths of metamorphic rocks developed within collisional orogens indicates that in many cases the exhumation trajectories follow the model subduction geotherm, in accordance with a tectonic model in which the metamorphic rocks are subducted and exhumed along a plate boundary. The timing of UHT metamorphism in the NCC (c. 1.92 Ga) coincides with the assembly of the NCC within the Paleoproterozoic Columbia supercontinent, a process that would have involved subduction of passive margins sediments and closure of the intervening ocean. Thus, the counterclockwise P–T path obtained in this study correlates well with a tectonic model involving subduction and final collisional suturing, with the UHT granulites representing the core of the hot or ultra-hot orogen developed during Columbia amalgamation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hot deformation behaviour of Mg–3Al alloy has been studied using the processing-map technique. Compression tests were conducted in the temperature range 250–550 °C and strain rate range 3 × 10−4 to 102 s−1 and the flow stress data obtained from the tests were used to develop the processing map. The various domains in the map corresponding to different dissipative characteristics have been identified as follows: (i) grain boundary sliding (GBS) domain accommodated by slip controlled by grain boundary diffusion at slow strain-rates (<10−3 s−1) in the temperature range from 350 to 450 °C, (ii) two different dynamic recrystallization (DRX) domains with a peak efficiency of 42% at 550 °C/10−1 s−1 and 425 °C/102 s−1 governed by stress-assisted cross-slip and thermally activated climb as the respective rate controlling mechanisms and (iii) dynamic recovery (DRV) domain below 300 °C in the intermediate strain rate range from 3 × 10−2 to 3 × 10−1 s−1. The regimes of flow instability have also been delineated in the processing map using an instability criterion. Adiabatic shear banding at higher strain rates (>101 s−1) and solute drag by substitutional Al atoms at intermediate strain rates (3 × 10−2 to 3 × 10−1 s−1) in the temperature range (350–450 °C) are responsible for flow instability. The relevance of these mechanisms with reference to hot working practice of the material has been indicated. The processing maps of Mg–3Al alloy and as-cast Mg have been compared qualitatively to elucidate the effect of alloying with aluminum on the deformation behaviour of magnesium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under hot-forming conditions characterized by high homologous temperatures and strain-rates, metals usually exhibit rate-dependent inelastic behavior. An elastic-viscoplastic constitutive model is presented here to describe metal behavior during hot-forming. The model uses an isotropic internal variable to represent the resistance offered to plastic deformation by the microstructure. Evolution equations are developed for the inelastic strain and the deformation resistance based on experimental results. A methodology is presented for extracting model parameters from constant true strain-rate compression tests performed at different temperatures. Model parameters are determined for an Al-1Mn alloy and an Al-Mg-Si alloy, and the predictions of the model are shown to be in good agreement with the experimental data. (C) 2000 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of hot deformation of INCONEL alloy MA 754 have been studied processing maps obtained on the basis of flow stress data generated in compression in the temperature range 700-degrees-C to 1150-degrees-C and strain rate range 0.001 to 100 s-1. The map exhibited three domains. (1) A domain of dynamic recovery occurs in the temperature range 800-degrees-C to 1075-degrees-C and strain rate range 0.02 to 2 s-1, with a peak efficiency of 18 pct occurring at 950-degrees-C and 0.1 s-1. Transmission electron microscope (TEM) micrographs revealed stable subgrain structure in this domain with the subgrain size increasing exponentially with an increase in temperature. (2) A domain exhibiting grain boundary cracking occurs at temperatures lower than 800-degrees-C and strain rates lower than 0.01 s-1. (3) A domain exhibiting intense grain boundary cavitation occurs at temperatures higher than 1075-degrees-C. The material did not exhibit a dynamic recrystallization (DRX) domain, unlike other superalloys. At strain rates higher than about 1 s-1, the material exhibits flow instabilities manifesting as kinking of the elongated grains and adiabatic shear bands. The material may be safely worked in the domain of dynamic recovery but can only be statically recrystallized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of strain rate and state-of-stress on the formation of ferrite in stainless steel type AISI 304L, 304 and 304 as-cast, during hot working has been studied. Compression and torsion tests were conducted in the temperature range 1100 to 1250 degrees C and strain rate range 0.001 to 100 s(-1) on these materials, Ferrite formation occurs during deformation at temperatures above 1150 degrees C and strain rates above 10 s(-1), in stainless steel type AISI 304L and 304. The tendency for the formation of ferrite is more in as-cast 304 than in wrought 304, In as-cast 304 the ferrite forms at lower temperatures and strain rates, The tendency for the ferrite formation is more in torsion than in compression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300-550 degrees C and 0.001-1 s(-1), respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300-350 degrees C and at strain rate 1 s(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a physical mechanism for the triggering of starbursts in interacting spiral galaxies by shock compression of the pre-existing disk giant molecular clouds (GMCs). We show that as a disk GMC tumbles into the central region of a galaxy following a galactic tidal encounter, it undergoes a radiative shock compression by the pre-existing high pressure of the central molecular intercloud medium. The shocked outer shell of a GMC becomes gravitationally unstable, which results in a burst of star formation in the initially stable GMC. In the case of colliding galaxies with physical overlap such as Arp 244, the cloud compression is shown to occur due to the hot, high-pressure remnant gas resulting from the collisions of atomic hydrogen gas clouds from the two galaxies. The resulting values of infrared luminosity agree with observations. The main mode of triggered star formation is via clusters of stars, thus we can naturally explain the formation of young, luminous star clusters observed in starburst galaxies.