996 resultados para Host Feeding
Resumo:
The objective of this study was to evaluate the feeding behavior of Triatoma vitticeps through the identification of its food sources and the characterization of the blood ingestion process. In addition, we aimed to verify if the saliva of this vector interferes with the perception of the host during the feedings by creating a nervous impulse. Here, we demonstrated that the T. vitticeps saliva reduces, gradually and irreversibly, the amplitude of the compound action potential of the nervous fibre, which helps decrease the perception of the insect by the host. The precipitin reaction demonstrated the feeding eclecticism of this vector, with the identification of eight food sources - most of them found simultaneously in the same insect. The analysis of the electrical signals produced by the cibarial pump during meals demonstrated that the best feeding performance of T. vitticeps nymphs that fed on pigeons is mainly due to the higher contraction frequency of the pump. The longer contact period with the host to obtain a complete meal compared with other triatominae species of the same instar could favor the occurrence of multiple blood sources in T. vitticeps under natural conditions, as it was evidenced by the precipitin test.
Resumo:
Amoebae are unicellular protozoan present worldwide in several environments mainly feeding on bacteria. Some of them, the amoebae-resistant bacteria (ARBs), have evolved mechanisms to survive and replicate inside amoebal species. These mainly include legionella, mycobacteria and Chlamydia-related bacteria. Amoebae can provide a replicative niche, can act as reservoir for bacteria whereas the cystic form can protect the internalized bacteria. Moreover, the amoebae represent a Trojan horse for ARBs to infect animals. The long interaction between amoebae and bacteria has likely selected for bacterial virulence traits leading to the adaptation towards an intracellular lifestyle, and some ARBs have acquired the ability to infect mammals. This review intends to highlight the important uses of amoebae in several fields in microbiology by describing the main tools developed using amoebal cells. First, amoebae such as Acanthamoeba are used to isolate and discover new intracellular bacterial species by two main techniques: the amoebal co-culture and the amoebal enrichment. In the second part, taking Waddlia chondrophila as example, we summarize some important recent applications of amoebae to discover new bacterial virulence factors, in particular thanks to the amoebal plaque assay. Finally, the genetically tractable Dictyostelium discoideum is used as a model organism to study host-pathogen interactions, in particular with the development of several approaches to manipulate its genome that allowed the creation of a wide range of mutated strains largely shared within the Dictyostelium community.
Resumo:
Host use by vectors is important in understanding the transmission of zoonotic diseases, which can affect humans, wildlife and domestic animals. Here, a synthesis of host exploitation patterns by kissing-bugs, vectors of Chagas disease, is presented. For this synthesis, an extensive literature review restricted to feeding sources analysed by precipitin tests was conducted. Modern tools from community ecology and multivariate statistics were used to determine patterns of segregation in host use. Rather than innate preferences for host species, host use by kissing-bugs is influenced by the habitats they colonise. One of the major limitations of studies on kissing-bug foraging has been the exclusive focus on the dominant vector species. We propose that expanding foraging studies to consider the community of vectors will substantially increase the understanding of Chagas disease transmission ecology. Our results indicate that host accessibility is a major factor that shapes the blood-foraging patterns of kissing-bugs. Therefore, from an applied perspective, measures that are directed at disrupting the contact between humans and kissing-bugs, such as housing improvement, are among the most desirable strategies for Chagas disease control.
Resumo:
The amount of nitrogen required to complete an insect's life cycle may vary greatly among species that have evolved distinct life history traits. Myrmecophilous caterpillars in the Lycaenidae family produce nitrogen-rich exudates from their dorsal glands to attract ants for protection, and this phenomenon has been postulated to shape the caterpillar's host-plant choice. Accordingly, it was postulated that evolution towards myrmecophily in Lycaenidae is correlated with the utilization of nitrogen-rich host plants. Although our results were consistent with the evolutionary shifts towards high-nutrient host plants serving as exaptation for the evolution of myrmecophily in lycaenids, the selection of nitrogen-rich host plants was not confined to lycaenids. Butterfly species in the nonmyrmecophilous family Pieridae also preferred nitrogen-rich host plants. Thus, we conclude that nitrogen is an overall important component in the caterpillar diet, independent of the level of myrmecophily, as nitrogen can enhance the overall insect fitness and survival. However, when nitrogen can be obtained through alternative means, as in socially parasitic lycaenid species feeding on ant brood, the selective pressure for maintaining the use of nutrient-rich host plants is relaxed, enabling the colonization of nitrogen-poor host plants.
Resumo:
Visceral leishmaniasis (VL) in Brazil is transmitted by the phlebotomine Lutzomyia longipalpis and in some midwestern regions by Lutzomyia cruzi. Studies of the phlebotomine fauna, feeding habits and natural infection rate by Leishmania contribute to increased understanding of the epidemiological chain of leishmaniases and their vectorial capacity. Collections were performed in Jaciara, state of Mato Grosso from 2010-2013, during which time 2,011 phlebotomines (23 species) were captured (68.70% Lu. cruzi and 20.52% Lutzomyia whitmani). Lu. cruzi females were identified by observing the shapes of the cibarium (a portion of the mouthpart) and spermatheca, from which samples were obtained for polymerase chain reaction to determine the rates of natural infection. Engorged phlebotomines were assessed to identify the blood-meal host by ELISA. A moderate correlation was discovered between the number of Lu. cruzi and the temperature and the minimum rate of infection was 6.10%. Twenty-two females were reactive to the antisera of bird (28%), dog (3.30%) and skunk (1.60%). We conclude that Lu. cruzi and Lu. whitmani have adapted to the urban environment in this region and that Lu. cruzi is the most likely vector of VL in Jaciara. Moreover, maintenance of Leishmania in the environment is likely aided by the presence of birds and domestic and synanthropic animals.
Resumo:
Odontopus brevirostris (Hustache, 1936) feeding on Annona squamosa L., A. cherimola Mill., A. glabra L., and A. muricata L. was observed. The last three host plants are recorded for the first time. The endophitic oviposition occurs in the veins of the ventral surface of the young leaves. The larvae, leaf miners, eat the parenchyma and the adults make small holes in the leaves. The pupation occurs in spherical cocoons protected by a sort of nest (pupation chamber) between the two epidermal layers.
Resumo:
Piperaceae species have been placed among the basal angiosperm and are adapted to a variety of habitats including moist forests, secondary vegetation and dry high lands. The major anatomical/morphology features are of small trees, vines, and shrubs for Piper species, while the epiphytic and succulent characteristics are predominant forms among Peperomia species. Their secondary chemistry can be mostly represented by amides, phenylpropanoids/lignoids, and chromenes in addition to a phletoria of biosynthetically mixed-origin secondary compounds. Although several amides and lignans are known as insecticides, several phytophagous insects, among which some considered pests of economic importance, have been observed feeding vigorously on Piperaceae species. Herein we describe the feeding preferences of fourteen phytophagous species of Coleoptera, Lepidoptera and Hemiptera over approximately fifty Piperaceae species observed in São Paulo, SP, Brazil, in a long-term basis.
Resumo:
The blood feeding of a population of Cx. nigripalpus from Parque Ecológico do Tietê (PET) was investigated using an indirect ELISA protocol. Mosquitoes were captured outside houses. Five hundred sixteen engorged females collected in a reforested area and 25 in an open area were tested. Rodents and dogs were the most common blood sources, accounting for approximately 65.3% of blood meals. Human blood was detected in 10.9%, dog blood in 26.1%, chicken blood in 2.4%, and rodent blood in 39.2% of the 541 insects tested. ELISA failed in identifying the blood sources of 233 engorged females, indicating that the mosquitoes may have fed on a host which was not tested. One hundred six individuals were positive for more than one host. The unweighted human blood index was 0.14 and the rodent/human, human/chicken, and dog/rodent feeding index values were 2.70, 1.51, and 1.33, respectively. Furthermore, rodents are defensive hosts for this haematophagous insect which looks for another host to complete blood-feeding. Considering that rodents are potential reservoirs for Mucambo virus and Saint Louis encephalitis virus and that Cx. nigripalpus feed on the blood of those mammals, we hypothesize that mosquito population in PET could participate in the transmission cycle of those arboviruses. Additionally, this species might be involved in the transmission of Dirofilaria immitis to dogs at this area.
Resumo:
In the field, immature individuals of Ascia monuste orseis (Godart), the kale caterpillars, migrate in great proportion to other regions of the host in order to complete their development; there, they find leaves of different ages and are exposed to the nutritional variation of these leaves. The objective of this study was to find out how the change to leaves of different ages affects the A. monuste orseis performance. The experiments were carried out providing one kind of leaf during the three first instars, and afterwards providing leaves of different ages during the fourth and fifth instars, since it is in these two instars that the changing movement prevails in that species. The parameters to measure performance were time of development (both to complete the three first instars and the fourth and fifth instars), ingestion of food, incorporated biomass, digestive indices that evaluated efficiency in food utilization, relative growth and intake rates, percentage of emergence, weight and size of the adults. In general, the caterpillars which were first fed on new leaves presented a better performance, but this study concluded that the A. monuste orseis caterpillars have shown skills to compensate food with lower nutritional value or less abundant in nature.
Resumo:
Parasitoids of the family Ichneumonidae (Hymenoptera) were obtained during an inventory of Lepidoptera larvae caught feeding in the wild on Croton floribundus (Euphorbiaceae). The Lepidoptera larvae were collected from host plants along trails inside three preserved forest areas in the Brazilian state of São Paulo. Fifteen different species of Ichneumonidae belonging to five subfamilies (Banchinae, Campopleginae, Cremastinae, Mesochorinae and Metopiinae) were obtained. Seven species of Ichneumonidae were reared from leaf rollers: Meniscomorpha sp. (Banchinae) and Leurus caeruliventris (Cresson) (Metopiinae) from Dichomeris sp. (Gelechiidae); Mesochorus sp.1 (Mesochorinae) [as a parasitoid of Hypomicrogaster sp. (Braconidae, Microgastrinae)], Campoplex sp. (Campopleginae) and Leurus sp. from Olethreutinae sp. (Tortricidae); Sphelodon annulicornis Morley (Banchinae) and Eutanygaster brevipennis Cameron (Cremastinae) were also reared from two unidentified species of Gelechiidae. The other eight species were reared from the larvae of exposed feeders: Diradops sp. (Banchinae) from Miselia albipuncta Hampson (Noctuidae), Casinaria sp. (Campopleginae) from Hymenomima conia Prout (Geometridae), Charops sp. (Campopleginae) from Bagisara paulensis Schaus (Noctuidae) and Oxydia vesulia (Cramer) (Geometridae), two species of Hyposoter Förster (Campopleginae) from Semaeopus sp. (Geometridae) and H. conia, two species of Microcharops Roman (Campopleginae) from B. paulensis and an unidentified species of Limacodidae and Mesochorus sp. 2 [reared from what was probably Aleiodes sp. (Braconidae, Rogadinae)] from an unidentified species of Noctuidae.
Resumo:
Effects of sex, host-plant deprivation and presence of conspecific immatures on the cannibalistic behavior of wild Ascia monuste orseis (Godart) (Lepidoptera, Pieridae). The specialist cabbage caterpillar Ascia monuste orseis (Lepidoptera, Pieridae) feeds on plants of the Brassicaceae family, but may eventually ingest conspecific eggs and larvae during the larval stage. The present study examines feeding behavior of 4th and 5th instar cabbage caterpillars in relation to sex, host-plant deprivation and presence of conspecifics. We recorded number of egg ingested per larvae, developmental indices and duration of feeding, exploratory and resting behavior. Kale deprived caterpillars presented high rates of cannibalism, development delay and decreased fecundity. Cannibalism rates were not influenced by the sex of the larvae. In general, the presence of conspecific eggs did not interfere with the frequency and duration of the categorical behavioral events. We conclude that food availability is a strong factor influencing the extent to which A. monuste orseis caterpillars cannibalize.
Resumo:
The aquatic habit and host plants of Paracles klagesi (Rothschild) (Lepidoptera, Erebidae, Arctiinae) in Brazil. The aquatic caterpillar Paracles klagesi (Rothschild, 1910) was collected from the headwaters of a stream in an ecotone between Cerrado and Babaçu forest in northeastern Brazil. The single caterpillar found was observed feeding on the macrophyte Tonina fluviatilis Aubl. (Eriocaulaceae) and other aquatic plants of the family Nymphaeaceae present in the area, but also accepted as food Elodea canadensis Michx. (Hydrocharitaceae) and Cabomba sp. (Cabombaceae) under laboratory conditions.
Resumo:
Numerous host qualities can modulate parasite fitness, and among these, host nutritive resources and immunity are of prime importance. Indeed, parasite fitness increases with the amount of nutritive resources extracted from the host body and decreases with host immune response. To maximize fitness, parasites have therefore to balance these two host components. Yet, because host nutritive resources and immunity both increase with host body condition, it is unclear whether parasites perform better on hosts in prime, intermediate, or poor condition. We investigated blood meal size and survival of the ectoparasitic louse fly Crataerina melbae in relation to body condition and cutaneous immune response of their Alpine swift (Apus melba) nestling hosts. Louse flies took a smaller blood meal and lived a shorter period of time when feeding on nestlings that were experimentally food deprived or had their cutaneous immune response boosted with methionine. Consistent with these results, louse fly survival was the highest when feeding on nonexperimental nestlings in intermediate body condition. Our findings emphasize that although hosts in poor condition had a reduced immunocompetence, parasites may have avoided them because individuals in poor condition did not provide adequate resources. These findings highlight the fact that giving host immunocompetence primary consideration can result in a biased appraisal of host-parasite interactions.
Resumo:
Phyllophaga cuyabana is a univoltine species and its development occurs completely underground. Its control by conventional methods, such as chemical and biological insecticides, is difficult, so it is important to understand its dispersion, reproduction, and population behavior in order to determine best pest management strategies. The objective of this work was to study the behavior of adults of P. cuyabana. This study was carried out in the laboratory, greenhouse and field sites in Paraná State, Brazil (24º25' S and 52º48' W), during four seasons. The results obtained demonstrate that: a) P. cuyabana adults have a synchronized short-flight period when mating and reproduction occurs; b) adults tend to aggregate in specific sites for mating; c) the majority of adults left the soil on alternate nights; d) the choice of mating and oviposition sites was made by females before copulation, since after copulation adults did not fly from or bury themselves at nearby locations; e) females that fed on leaves after mating, oviposited more eggs than females that had not fed;f) plant species such as sunflower (Helianthus annuus) and the Crotalaria juncea are important food sources for adults.
Resumo:
Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.