776 resultados para Hopfield Neural Network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased emphasis on rotorcraft performance and perational capabilities has resulted in accurate computation of aerodynamic stability and control parameters. System identification is one such tool in which the model structure and parameters such as aerodynamic stability and control derivatives are derived. In the present work, the rotorcraft aerodynamic parameters are computed using radial basis function neural networks (RBFN) in the presence of both state and measurement noise. The effect of presence of outliers in the data is also considered. RBFN is found to give superior results compared to finite difference derivatives for noisy data. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an Artificial Neural Network (ANN) approach for locating faults in distribution systems. Different from the traditional Fault Section Estimation methods, the proposed approach uses only limited measurements. Faults are located according to the impedances of their path using a Feed Forward Neural Networks (FFNN). Various practical situations in distribution systems, such as protective devices placed only at the substation, limited measurements available, various types of faults viz., three-phase, line (a, b, c) to ground, line to line (a-b, b-c, c-a) and line to line to ground (a-b-g, b-c-g, c-a-g) faults and a wide range of varying short circuit levels at substation, are considered for studies. A typical IEEE 34 bus practical distribution system with unbalanced loads and with three- and single- phase laterals and a 69 node test feeder with different configurations are considered for studies. The results presented show that the proposed approach of fault location gives close to accurate results in terms of the estimated fault location.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper. we propose a novel method using wavelets as input to neural network self-organizing maps and support vector machine for classification of magnetic resonance (MR) images of the human brain. The proposed method classifies MR brain images as either normal or abnormal. We have tested the proposed approach using a dataset of 52 MR brain images. Good classification percentage of more than 94% was achieved using the neural network self-organizing maps (SOM) and 98% front support vector machine. We observed that the classification rate is high for a Support vector machine classifier compared to self-organizing map-based approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multimedia mining primarily involves, information analysis and retrieval based on implicit knowledge. The ever increasing digital image databases on the Internet has created a need for using multimedia mining on these databases for effective and efficient retrieval of images. Contents of an image can be expressed in different features such as Shape, Texture and Intensity-distribution(STI). Content Based Image Retrieval(CBIR) is an efficient retrieval of relevant images from large databases based on features extracted from the image. Most of the existing systems either concentrate on a single representation of all features or linear combination of these features. The paper proposes a CBIR System named STIRF (Shape, Texture, Intensity-distribution with Relevance Feedback) that uses a neural network for nonlinear combination of the heterogenous STI features. Further the system is self-adaptable to different applications and users based upon relevance feedback. Prior to retrieval of relevant images, each feature is first clustered independent of the other in its own space and this helps in matching of similar images. Testing the system on a database of images with varied contents and intensive backgrounds showed good results with most relevant images being retrieved for a image query. The system showed better and more robust performance compared to existing CBIR systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For active contour modeling (ACM), we propose a novel self-organizing map (SOM)-based approach, called the batch-SOM (BSOM), that attempts to integrate the advantages of SOM- and snake-based ACMs in order to extract the desired contours from images. We employ feature points, in the form of ail edge-map (as obtained from a standard edge-detection operation), to guide the contour (as in the case of SOM-based ACMs) along with the gradient and intensity variations in a local region to ensure that the contour does not "leak" into the object boundary in case of faulty feature points (weak or broken edges). In contrast with the snake-based ACMs, however, we do not use an explicit energy functional (based on gradient or intensity) for controlling the contour movement. We extend the BSOM to handle extraction of contours of multiple objects, by splitting a single contour into as many subcontours as the objects in the image. The BSOM and its extended version are tested on synthetic binary and gray-level images with both single and multiple objects. We also demonstrate the efficacy of the BSOM on images of objects having both convex and nonconvex boundaries. The results demonstrate the superiority of the BSOM over others. Finally, we analyze the limitations of the BSOM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel algorithm for placement of standard cells in VLSI circuits based on an analogy of this problem with neural networks. By employing some of the organising principles of these nets, we have attempted to improve the behaviour of the bipartitioning method as proposed by Kernighan and Lin. Our algorithm yields better quality placements compared with the above method, and also makes the final placement independent of the initial partition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural network approach for solving the two-dimensional assignment problem is proposed. The design of the neural network is discussed and simulation results are presented. The neural network obtains 10-15% lower cost placements on the examples considered, than the adjacent pairwise exchange method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An adaptive optimization algorithm using backpropogation neural network model for dynamic identification is developed. The algorithm is applied to maximize the cellular productivity of a continuous culture of baker's yeast. The robustness of the algorithm is demonstrated in determining and maintaining the optimal dilution rate of the continuous bioreactor in presence of disturbances in environmental conditions and microbial culture characteristics. The simulation results show that a significant reduction in time required to reach optimal operating levels can be achieved using neural network model compared with the traditional dynamic linear input-output model. The extension of the algorithm for multivariable adaptive optimization of continuous bioreactor is briefly discussed.