969 resultados para Homologous recombinational repair


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inherited mutations in human PALB2 are associated with a predisposition to breast and pancreatic cancers. PALB2's tumor-suppressing effect is thought to be based on its ability to facilitate BRCA2's function in homologous recombination. However, the biochemical properties of PALB2 are unknown. Here we show that human PALB2 binds DNA, preferentially D-loop structures, and directly interacts with the RAD51 recombinase to stimulate strand invasion, a vital step of homologous recombination. This stimulation occurs through reinforcing biochemical mechanisms, as PALB2 alleviates inhibition by RPA and stabilizes the RAD51 filament. Moreover, PALB2 can function synergistically with a BRCA2 chimera (termed piccolo, or piBRCA2) to further promote strand invasion. Finally, we show that PALB2-deficient cells are sensitive to PARP inhibitors. Our studies provide the first biochemical insights into PALB2's function with piBRCA2 as a mediator of homologous recombination in DNA double-strand break repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human Rad51 recombinase is essential for the repair of double-strand breaks in DNA that occur in somatic cells after exposure to ionising irradiation, or in germ line cells undergoing meiotic recombination. The initiation of double-strand break repair is thought to involve resection of the double-strand break to produce 3'-ended single-stranded (ss) tails that invade homologous duplex DNA. Here, we have used purified proteins to set up a defined in vitro system for the initial strand invasion step of double-strand break repair. We show that (i) hRad51 binds to the ssDNA of tailed duplex DNA molecules, and (ii) hRad51 catalyses the invasion of tailed duplex DNA into homologous covalently closed DNA. Invasion is stimulated by the single-strand DNA binding protein RPA, and by the hRad52 protein. Strikingly, hRad51 forms terminal nucleoprotein filaments on either 3' or 5'-ssDNA tails and promotes strand invasion without regard for the polarity of the tail. Taken together, these results show that hRad51 is recruited to regions of ssDNA occurring at resected double-strand breaks, and that hRad51 shows no intrinsic polarity preference at the strand invasion step that initiates double-strand break repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The manipulation of large (>10 kb) plasmid systems amplifies problems common to traditional cloning strategies. Unique or rare restriction enzyme recognition sequences are uncommon and very rarely located in opportunistic locations. Making site-specific deletions and insertions in larger plasmids consequently leads to multiple step cloning strategies that are often limited by time-consuming, low efficiency linker insertions or blunt-end cloning strategies. Manipulation ofthe adenovirus genome and the genomes ofother viruses as bacterial plasmids are systems that typify such situations. Recombinational cloning techniques based on homologous recombination in Saccharomyces cerevisiae that circumvent many ofthese common problems have been developed. However, these techniques are rarely realistic options for such large plasmid systems due to the above mentioned difficulties associated with the addition ofrequired yeast DNA replication, partitioning and selectable marker sequences. To determine ifrecombinational cloning techniques could be modified to simplify the manipulation of such a large plasmid system, a recombinational cloning system for the creation of human adenovirus EI-deletion rescue plasmids was developed. Here we report for the first time that the 1,456 bp TRP1/ARS fragment ofYRp7 is alone sufficient to foster successful recombinational cloning without additional partitioning sequences, using only slight modifications of existing protocols. In addition, we describe conditions for efficient recombinational cloning involving simultaneous deletion of large segments ofDNA (>4.2 kb) and insertion of donor fragment DNA using only a single non-unique restriction site. The discovery that recombinational cloning can foster large deletions has been used to develop a novel recombiliational cloillng technique, selectable inarker 'kilockouf" recombinational cloning, that uses deletion of a yeast selectable marker coupled with simultaneous negative and positive selection to reduce background transformants to undetectable levels. The modification of existing protocols as described in this report facilitates the use of recombinational cloning strategies that are otherwise difficult or impractical for use with large plasmid systems. Improvement of general recombinational cloning strategies and strategies specific to the manipulation ofthe adenovirus genome are considered in light of data presented herein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemotherapeutic SN1‑methylating agents are important anticancer drugs. They induce several covalent modifications in the DNA, from which O6‑methylguanine (O6MeG) is the main toxic lesion. In this work, different hypotheses that have been proposed to explain the mechanism of O6MeG‑triggered cell death were tested. The results of this work support the abortive processing model, which states that abortive post‑replicative processing of O6MeG‑driven mispairs by the DNA mismatch repair (MMR) machinery results in single‑strand gaps in the DNA that, upon a 2nd round of DNA replication, leads to DNA double‑strand break (DSB) formation, checkpoint activation and cell death. In this work, it was shown that O6MeG induces an accumulation of cells in the 2nd G2/M‑phase after treatment. This was accompanied by an increase in DSB formation in the 2nd S/G2/M‑phase, and paralleled by activation of the checkpoint kinases ATR and CHK1. Apoptosis was activated in the 2nd cell cycle. A portion of cells continue proliferating past the 2nd cell cycle, and triggers apoptosis in the subsequent generations. An extension to the original model is proposed, where the persistence of O6MeG in the DNA causes new abortive MMR processing in the 2nd and subsequent generations, where new DSB are produced triggering cell death. Interestingly, removal of O6MeG beyond the 2nd generation lead to a significant, but not complete, reduction in apoptosis, pointing to the involvement of additional mechanisms as a cause of apoptosis. We therefore propose that an increase in genomic instability resulting from accumulation of mis‑repaired DNA damage plays a role in cell death induction. Given the central role of DSB formation in toxicity triggered by chemotherapeutic SN1‑alkylating agents, it was aimed in the second part of this thesis to determine whether inhibition of DSB repair by homologous recombination (HR) or non‑homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioblastoma cells to these agents. The results of this work show that HR down‑regulation in glioblastoma cells impairs the repair of temozolomide (TMZ)‑induced DSB. HR down‑regulation greatly sensitizes cells to cell death following O6‑methylating (TMZ) or O6‑chlorethylating (nimustine) treatment, but not following ionizing radiation. The RNAi mediated inhibition in DSB repair and chemo‑sensitization was proportional to the knockdown of the HR protein RAD51. Chemo‑sensitization was demonstrated for several HR proteins, in glioma cell lines proficient and mutated in p53. Evidence is provided showing that O6MeG is the primary lesion responsible for the increased sensitivity of glioblastoma cells following TMZ treatment, and that inhibition of the resistance marker MGMT restores the chemo‑sensitization achieved by HR down‑regulation. Data are also provided to show that inhibition of DNA‑PK dependent NHEJ does not significantly sensitized glioblastoma cells to TMZ treatment. Finally, the data also show that PARP inhibition with olaparib additionally sensitized HR down‑regulated glioma cells to TMZ. Collectively, the data show that processing of O6MeG through two rounds of DNA replication is required for DSB formation, checkpoint activation and apoptosis induction, and that O6MeG‑triggered apoptosis is also executed in subsequent generations. Furthermore, the data provide proof of principle evidence that down‑regulation of HR is a reasonable strategy for sensitizing glioma cells to killing by O6‑alkylating chemotherapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal activation of DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems is a compelling likelihood with significant implications in both cancer biology and treatment. Here, we show that due to a potential substrate switch, mutated variants of the receptor for hepatocyte growth factor Met, but not the wild-type form of the receptor, directly couple to the Abl tyrosine kinase and the Rad51 recombinase, two key signaling elements of homologous recombination-based DNA repair. Treatment of cells that express the mutated receptor variants with the Met inhibitor SU11274 leads, in a mutant-dependent manner, to a reduction of tyrosine phosphorylated levels of Abl and Rad51, impairs radiation-induced nuclear translocation of Rad51, and acts as a radiosensitizer together with the p53 inhibitor pifithrin-alpha by increasing cellular double-strand DNA break levels following exposure to ionizing radiation. Finally, we propose that in order to overcome a mutation-dependent resistance to SU11274, this aberrant molecular axis may alternatively be targeted with the Abl inhibitor, nilotinib.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic instability in mammalian cells can occur by many different mechanisms. In the absence of exogenous sources of DNA damage, the DNA structure itself has been implicated in genetic instability. When the canonical B-DNA helix is naturally altered to form a non-canonical DNA structure such as a Z-DNA or H-DNA, this can lead to genetic instability in the form of DNA double-strand breaks (DSBs) (1, 2). Our laboratory found that the stability of these non-B DNA structures was different in mammals versus Escherichia coli (E.coli) bacteria (1, 2). One explanation for the difference between these species may be a result of how DSBs are repaired within each species. Non-homologous end-joining (NHEJ) is primed to repair DSBs in mammalian cells, while bacteria that lack NHEJ (such as E.coli), utilize homologous recombination (HR) to repair DSBs. To investigate the role of the error-prone NHEJ repair pathway in DNA structure-induced genetic instability, E.coli cells were modified to express genes to allow for a functional NHEJ system under different HR backgrounds. The Mycobacterium tuberculosis NHEJ sufficient system is composed of Ku and Ligase D (LigD) (3). These inducible NHEJ components were expressed individually and together in E.coli cells, with or without functional HR (RecA/RecB), and the Z-DNA and H-DNA-induced mutations were characterized. The Z-DNA structure gave rise to higher mutation frequencies compared to the controls, regardless of the DSB repair pathway(s) available; however, the type of mutants produced after repair was greatly dictated on the available DSB repair system, indicated by the shift from 2% large-scale deletions in the total mutant population to 24% large-scale deletions when NHEJ was present (4). This suggests that NHEJ has a role in the large deletions induced by Z-DNA-forming sequences. H-DNA structure, however, did not exhibit an increase in mutagenesis in the newly engineered E.coli environment, suggesting the involvement of other factors in regulating H-DNA formation/stability in bacterial cells. Accurate repair by established DNA DSB repair pathways is essential to maintain the stability of eukaryotic and prokaryotic genomes and our results suggest that an error-prone NHEJ pathway was involved in non-B DNA structure-induced mutagenesis in both prokaryotes and eukaryotes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ERCC1 (Excision Repair Cross-Complementing-1) gene is the presumptive mammalian homolog of the Saccharomyces cerevisiae RAD10 gene. In mammalian NER, the Ercc1/XpF complex functions as an endonuclease that specifically recognizes 5$\sp\prime$ double-strand-3$\sp\prime$ single-strand structures. In yeast, the analogous function is performed by the Rad1/Rad10 complex. These observations and the conservation of amino acid homology between the Rad1 and XpF and the Rad10 and Ercc1 proteins has led to a general assumption of functional homology between these genes.^ In addition to NER, the Rad1/Rad10 endonuclease complex is also required in certain specialized mitotic recombination pathways in yeast. However, a similiar requirement for the endonuclease function of the Ercc1/XpF complex during genetic recombination in mammalian cells has not been directly demonstrated. The experiments performed in these studies were designed to determine if ERCC1 deficiency would produce recombination-deficient phenotypes in CHO cells similar to those observed in RAD10 deletion mutants, including: (1) decreased single-reciprocal exchange recombination, and (2) inability to process 5$\sp\prime$ sequence heterology in recombination intermediates.^ Specifically, these studies describe: (1) The isolation and characterization of the ERCC1 locus of Chinese hamster ovary cells; (2) The production of an ERCC1 null mutant cell line by targeted knock-out of the endogenous ERCC1 gene in a Chinese hamster ovary cell line, CHO-ATS49tg, which contains an endogenous locus, APRT, suitable as a chromosomal target for homologous recombination; (3) The characterization of mutant ERCC1 alleles from a panel of Chinese hamster ovary cell ERCC1 mutants derived by conventional mutagenesis; (4) An investigation of the effects of ERCC1 mutation on mitotic recombination through targeting of the APRT locus in an ERCC1 null background.^ The results of these studies strongly suggest that the role of ERCC1 in homologous recombination in mammalian cells is analogous to that of the yeast RAD10 gene. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genomic DNA of eukaryotic cells is well organized into chromatin structures. However, these repressed structures present barriers that block the access of regulatory factors to the genome during various nuclear events. To overcome the obstacle, two major cellular processes, post-modification of histone tails and ATP-dependent chromatin remodeling, are involved in reconfiguring chromatin structure and creating accessible DNA. Despite the current research progress, much remains to be explored concerning the relationship between chromatin remodeling and DNA repair. Recently, one member of the ATP-dependent chromatin remodeling complexes, INO80, has been found to play a crucial role in DNA damage repair. However, the functions of this complex in higher eukaryotes have yet to be determined. The goal of my study is to generate a human somatic INO80 conditional knockout model and investigate the functions of Ino80 in damage repair.^ By homologous targeting of the INO80 locus in human HCT116 colon epithelial cells, I established a human somatic INO80 conditional knockout model. I have demonstrated that the conditional INO80 cells exhibited a sufficiently viable period when the INO80 protein is removed. Moreover, I found that loss of INO80 resulted in deficient UV lesion repair in response to UV while the protein levels of the NER factors such as XPC, XPA, XPD were not affected. And in vitro repair synthesis assay showed that the NER incision and repair synthesis activities were intact in the absence of INO80. Examination on the damage recognition factor XPC showed its recruitment to damage sites was impaired in the INO80 mutant cells. Loss of INO80 also led to reduced enrichment of XPA at the site of UV lesions. Despite the reduced recruitment of XPC and XPA observed in INO80 mutants, no direct interaction was detected. Meanwhile, direct interaction between INO80 and DDB1, the initial UV lesion detector, was detected by coimmunoprecipitation. UV-induced chromosome relaxation was reduced in cells devoid of INO80. These results demonstrate the INO80 complex may participates in the NER by interacting with DDB1 and having a critical role of in creating DNA accessibility for the nucleotide excision pathway. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inability to maintain genomic stability and control proliferation are hallmarks of many cancers, which become exacerbated in the presence of unrepaired DNA damage. Such genotoxic stresses trigger the p53 tumor suppressor network to activate transient cell cycle arrest allowing for DNA repair; if the damage is excessive or irreparable, apoptosis or cellular senescence is triggered. One of the major DNA repair pathway that mends DNA double strand breaks is non-homologous end joining (NHEJ). Abrogating the NHEJ pathway leads to an accumulation of DNA damage in the lymphoid system that triggers p53-mediated apoptosis; complete deletion of p53 in this system leads to aggressive lymphomagenesis. Therefore, to study the effect of p53-dependent cell cycle arrest, we utilized a hypomorphic, separation-of-function mutant, p53p/p, which completely abrogates apoptosis yet retains partial cell cycle arrest ability. We crossed DNA ligase IV deficiency, a downstream ligase crucial in mending breaks during NHEJ, into the p53p/p background (Lig4-/-p53p/p). The accumulation of DNA damage activated the p53/p21 axis to trigger cellular senescence in developing lymphoid cells, which absolutely suppressed tumorigenesis. Interestingly, these mice progressively succumb to severe diabetes. Mechanistic analysis revealed that spontaneous DNA damage accumulated in the pancreatic b-cells, a unique subset of endocrine cells solely responsible for insulin production to regulate glucose homeostasis. The genesis of adult b-cells predominantly occurs through self-replication, therefore modulating cellular proliferation is an essential component for renewal. The progressive accumulation of DNA damage, caused by Lig4-/-, activated p53/p21-dependent cellular senescence in mutant pancreatic b-cells that lead to islet involution. Insulin levels subsequently decreased, deregulating glucose homeostasis driving overt diabetes. Our Lig4-/-p53p/p model aptly depicts the dichotomous role of cellular senescence—in the lymphoid system prevents tumorigenesis yet in the endocrine system leads to the decrease of insulin-producing cells causing diabetes. To further delineate the function of NHEJ in pancreatic b-cells, we analyzed mice deficient in another component of the NHEJ pathway, Ku70. Although most notable for its role in DNA damage recognition and repair within the NHEJ pathway, Ku70 has NHEJ-independent functions in telomere maintenance, apoptosis, and transcriptional regulation/repression. To our surprise, Ku70-/-p53p/p mutant mice displayed a stark increase in b-cell proliferation, resulting in islet expansion, heightened insulin levels and hypoglycemia. Augmented b-cell proliferation was accompanied with the stabilization of the canonical Wnt pathway, responsible for this phenotype. Interestingly, the progressive onset of cellular senescence prevented islet tumorigenesis. This study highlights Ku70 as an important modulator in not only maintaining genomic stability through NHEJ-dependent functions, but also reveals a novel NHEJ-independent function through regulation of pancreatic b-cell proliferation. Taken in aggregate, these studies underscore the importance for NHEJ to maintain genomic stability in b-cells as well as introduces a novel regulator for pancreatic b-cell proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When gene conversion is initiated by a double-strand break (DSB), any nonhomologous DNA that may be present at the ends must be removed before new DNA synthesis can be initiated. In Saccharomyces cerevisiae, removal of nonhomologous ends depends not only on the nucleotide excision repair endonuclease Rad1/Rad10 but also on Msh2 and Msh3, two proteins that are required to correct mismatched bp. These proteins have no effect when DSB ends are homologous to the donor, either in the kinetics of recombination or in the proportion of gene conversions associated with crossing-over. A second DSB repair pathway, single-strand annealing also requires Rad1/Rad10 and Msh2/Msh3, but reveals a difference in their roles. When the flanking homologous regions that anneal are 205 bp, the requirement for Msh2/Msh3 is as great as for Rad1/Rad10; but when the annealing partners are 1,170 bp, Msh2/Msh3 have little effect, while Rad1/Rad10 are still required. Mismatch repair proteins Msh6, Pms1, and Mlh1 are not required. We suggest Msh2 and Msh3 recognize not only heteroduplex loops and mismatched bp, but also branched DNA structures with a free 3′ tail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgements We wish to thank Anura Shodhan for sharing unpublished results and Peter Schlögelhofer and Anura Shodhan for critically reading the manuscript. Part of this work was supported by grant P 27313-B20 from the Austrian Science Fund to JL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RAD10 gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1− and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT− cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT− products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1− cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1− cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1− cells are repaired by illegitimate recombination.