843 resultados para Historic conscience. Country of Mossoró . Memory. Spatiality.
Resumo:
This special issue of Cortex focuses on the relative contribution of different neural networks to memory and the interaction of 'core' memory processes with other cognitive processes. In this article, we examine both. Specifically, we identify cognitive processes other than encoding and retrieval that are thought to be involved in memory; we then examine the consequences of damage to brain regions that support these processes. This approach forces a consideration of the roles of brain regions outside of the frontal, medial-temporal, and diencephalic regions that form a central part of neurobiological theories of memory. Certain kinds of damage to visual cortex or lateral temporal cortex produced impairments of visual imagery or semantic memory; these patterns of impairment are associated with a unique pattern of amnesia that was distinctly different from the pattern associated with medial-temporal trauma. On the other hand, damage to language regions, auditory cortex, or parietal cortex produced impairments of language, auditory imagery, or spatial imagery; however, these impairments were not associated with amnesia. Therefore, a full model of autobiographical memory must consider cognitive processes that are not generally considered 'core processes,' as well as the brain regions upon which these processes depend.
Resumo:
In Experiment 1, subjects were presented with either the odors or the names of 15 common objects. In Experiment 2, subjects were presented with either the odors, photographs, or names of 16 common objects. All subjects were asked to describe an autobiographical memory evoked by each cue, to date each memory, and to rate each memory on vividness, pleasantness, and the number of times that the memory had been thought of and talked about prior to the experiment. Compared with memories evoked by photographs or names, memories evoked by odors were reported to be thought of and talked about less often prior to the experiment and were more likely to be reported as never having been thought of or talked about prior to the experiment. No other effects were consistently found, though there was a suggestion that odors might evoke more pleasant and emotional memories than other types of cues. The relation of these results to the folklore concerning olfactory cuing is discussed.
Resumo:
info:eu-repo/semantics/published
Resumo:
This brief investigates a possible application of the inverse Preisach model in combination with the feedforward and feedback control strategies to control shape memory alloy actuators. In the feedforward control design, a fuzzy-based inverse Preisach model is used to compensate for the hysteresis nonlinearity effect. An extrema input history and a fuzzy inference is utilized to replace the inverse classical Preisach model. This work allows for a reduction in the number of experimental parameters and computation time for the inversion of the classical Preisach model. A proportional-integral-derivative (PID) controller is used as a feedback controller to regulate the error between the desired output and the system output. To demonstrate the effectiveness of the proposed controller, real-time control experiment results are presented.
Resumo:
Shape memory alloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics, and so on. Although the number of applications is increasing, there has been limited success in precise motion control owing to the hysteresis effect of these smart actuators. The present paper proposes an optimization of the proportional-integral-derivative (PID) control method for SMA actuators by using genetic algorithm and the Preisach hysteresis model.
Resumo:
Shape Memory Alloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.
Resumo:
Shapememoryalloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics and so on. Nonlinearity hysteresis effects existing in SMA actuators present a problem in the motion control of these smart actuators. This paper investigates the control problem of SMA actuators in both simulation and experiment. In the simulation, the numerical Preisachmodel with geometrical interpretation is used for hysteresis modeling of SMA actuators. This model is then incorporated in a closed loop PID control strategy. The optimal values of PID parameters are determined by using geneticalgorithm to minimize the mean squared error between desired output displacement and simulated output. However, the control performance is not good compared with the simulation results when these parameters are applied to the real SMA control since the system is disturbed by unknown factors and changes in the surrounding environment of the system. A further automated readjustment of the PID parameters using fuzzylogic is proposed for compensating the limitation. To demonstrate the effectiveness of the proposed controller, real time control experiment results are presented.
Resumo:
Objective: Previous studies with patients diagnosed with Major Depressive Disorder (MDD) revealed deficits in working memory and executive functions. In the present study we investigated whether patients with MDD have the ability to allocate cognitive resources in dual task performance of a highly challenging cognitive task (working memory) and a task that is seemingly automatic in nature (postural control). Method: Fifteen young (18–35 years old) patients with MDD and 24 healthy age-matched controls performed a working memory task and two postural control tasks (standing on a stable or on a moving platform) both separately (single task) and concurrently (dual task). Results: Postural stability under single task conditions was similar in the two groups, and in line with earlier studies, MDD patients recalled fewer working memory items than controls. To equate working memory challenges for patients and controls, task difficulty (number of items presented) in dual task was individually adjusted such that accuracy of working memory performance was similar for the two groups under single task conditions. Patients showed greater postural instability in dual task performance on the stable platform, and more importantly when posture task difficulty increased (moving platform) they showed deficits in both working memory accuracy and postural stability compared with healthy controls. Conclusions: We interpret our results as evidence for executive control deficits in MDD patients that affect their task coordination. In multitasking, these deficits affect not only cognitive but also sensorimotor task performance.