184 resultados para Histomorphometry
Resumo:
INTRODUCTION: Intrauterine growth restriction (IUGR) affects ∼8% of all pregnancies and is associated with major perinatal mortality and morbidity, and with an increased risk to develop cardiovascular diseases in adulthood. Despite identification of several risk factors, the mechanisms implicated in the development of IUGR remain poorly understood. In case of placental insufficiency, reduced delivery of oxygen and/or nutrients to the fetus could be associated with alterations in the umbilical circulation, contributing further to the impairment of maternal-fetal exchanges. We compared the structural and functional properties of umbilical cords from growth-restricted and appropriate for gestational age (AGA) term newborns, with particular attention to the umbilical vein (UV). METHODS: Human umbilical cords were collected at delivery. Morphological changes were investigated by histomorphometry, and UV's reactivity by pharmacological studies. RESULTS: Growth-restricted newborns displayed significantly lower growth parameters, placental weight and umbilical cord diameter than AGA controls. Total cross-section and smooth muscle areas were significantly smaller in UV of growth-restricted neonates than in controls. Maximal vasoconstriction achieved in isolated UV was lower in growth-restricted boys than in controls, whereas nitric oxide-induced relaxation was significantly reduced in UV of growth-restricted girls compared to controls. CONCLUSION: IUGR is associated with structural alterations of the UV in both genders, and with a decreased nitric oxide-induced relaxation in UV of newborn girls, whereas boys display impaired vasoconstriction. Further investigations will allow to better understand the regulation of umbilical circulation in growth-restricted neonates, which could contribute to devise potential novel therapeutic strategies to prevent or limit the development of IUGR.
Resumo:
Résumé de l'article : L'hyperplasie intimale est un processus de remodelage vasculaire ubiquitaire après une lésion, pouvant menacer la perméabilité de tout type de reconstruction vasculaire. Les mécanismes physiopathologiques impliqués dans le développement de l'hyperplasie intimale ne sont que partiellement élucidés. Il est par conséquent nécessaire d'effectuer des recherches complémentaires afin d'en améliorer la compréhension et ainsi permettre l'élaboration de nouvelles stratégies thérapeutiques médicamenteuses. La culture de veines en milieu statique permet le développement de l'hyperplasie intimale. Ce modèle maintient la viabilité tissulaire, comme décrit précédemment dans d'autres études, mais empêche l'analyse des paramètres hémodynamiques. La mise au point d'un modèle de perfusion in vitro permettant la perfusion de segments vasculaires représente une approche expérimentale intégrant les différents facteurs hémodynamiques. Le système de perfusion (Ex Vivo Vein Support System) que nous avons élaboré conserve l'intégrité pariétale ainsi que les propriétés vasomotrices des veines pour une durée de 14 jours. Cette étude démontre que les deux modèles permettent le développement de l'hyperplasie intimale. Toutefois, les propriétés vasomotrices ainsi que l'influence des paramètres hémodynamiques ne peuvent être analysées que par l'utilisation du système de perfusion. Ce dernier a permis de perfuser des vaisseaux humains sans contamination bactérienne tout en maintenant l'intégrité cellulaire. Ce modèle de perfusion se rapproche plus des conditions hémodynamiques rencontrées in vivo que le modèle statique. Abstract : Background. Intimal hyperplasia (IH) is a vascular remodeling process which often leads to failure of arterial bypass or hemodialysis access. Experimental and clinical work have provided insight in IH development; however, further studies under precise con-trolled conditions are required to improve therapeutic strategies to inhibit IH development. Ex vivo perfusion of human vessel segments under standardized hemodynamic conditions may provide an adequate experimental approach for this purpose. Therefore, chronically perfused venous segments were studied and compared to traditional static culture procedures with regard to functional and histomorphologic characteristics as well as gene expression. Materials and methods. Static vein culture allowing high tissue viability was performed as previously described. Ex vivo vein support system (EVVSS) was performed using a vein support system consisting of an incubator with a perfusion chamber and a pump. EVVSS allows vessel perfusion under continuous flow while maintaining controlled hemodynamic conditions. Each human saphenous vein was divided in two parts, one cultured in a Pyrex dish and the other part perfused in EVVSS for 14 days. Testing of vasomotion, histomorphometry, expression of CD 31, Factor VIII, MIB 1, α-actin, and PAI-1 were determined before and after 14 days of either experimental conditions. Results, Human venous segments cultured under traditional or perfused conditions exhibited similar IH after 14 days as shown by histomorphometry. Smooth-muscle cell ( SMC) was preserved after chronic perfusion. Although integrity of both endothelial and smooth-muscle cells appears to be maintained in both culture conditions as confirmed by CD31, factor VIII and α-actin expression, a few smooth-muscle cells in the media stained positive for factor VIII. Cell-proliferation marker MIB-1 was also detected in the two settings and PAI-1 mRNA expression and activity increased significantly after 14 days of culture and perfusion. Conclusion. This study demonstrates the feasibility to chronically perfuse human vessels under sterile conditions with preservation of cellular integrity and vascular contractility. To gain insights into the mechanisms leading to IH, it will now be possible to study vascular remodeling not only under static conditions but also in hemodynamic environment mimicking as closely as possible the flow conditions encountered in reconstructive vascular surgery.
Resumo:
The molecular networks controlling bone homeostasis are not fully understood. The common evolution of bone and adaptive immunity encourages the investigation of shared regulatory circuits. MHC Class II Transactivator (CIITA) is a master transcriptional co-activator believed to be exclusively dedicated for antigen presentation. CIITA is expressed in osteoclast precursors, and its expression is accentuated in osteoporotic mice. We thus asked whether CIITA plays a role in bone biology. To this aim, we fully characterized the bone phenotype of two mouse models of CIITA overexpression, respectively systemic and restricted to the monocyte-osteoclast lineage. Both CIITA-overexpressing mouse models revealed severe spontaneous osteoporosis, as assessed by micro-computed tomography and histomorphometry, associated with increased osteoclast numbers and enhanced in vivo bone resorption, whereas osteoblast numbers and in vivo bone-forming activity were unaffected. To understand the underlying cellular and molecular bases, we investigated ex vivo the differentiation of mutant bone marrow monocytes into osteoclasts and immune effectors, as well as osteoclastogenic signaling pathways. CIITA-overexpressing monocytes differentiated normally into effector macrophages or dendritic cells but showed enhanced osteoclastogenesis, whereas CIITA ablation suppressed osteoclast differentiation. Increased c-fms and receptor activator of NF-κB (RANK) signaling underlay enhanced osteoclast differentiation from CIITA-overexpressing precursors. Moreover, by extending selected phenotypic and cellular analyses to additional genetic mouse models, namely MHC Class II deficient mice and a transgenic mouse line lacking a specific CIITA promoter and re-expressing CIITA in the thymus, we excluded MHC Class II expression and T cells from contributing to the observed skeletal phenotype. Altogether, our study provides compelling genetic evidence that CIITA, the molecular switch of antigen presentation, plays a novel, unexpected function in skeletal homeostasis, independent of MHC Class II expression and T cells, by exerting a selective and intrinsic control of osteoclast differentiation and bone resorption in vivo. © 2014 American Society for Bone and Mineral Research.
Resumo:
The aim of this study was to describe the demographic, clinicopathological, biological and morphometric features of Libyan breast cancer patients. The supporting value of nuclear morphometry and static image cytometry in the sensitivity for detecting breast cancer in conventional fine-needle aspiration biopsies were estimated. The findings were compared with findings in breast cancer in Finland and Nigeria. In addation, the value of ER and PR were evaluated. There were 131 histological samples, 41 cytological samples, and demographic and clinicopathological data from 234 Libyan patients. The Libyan breast cancer is dominantly premenopausal and in this feature it is similar to breast cancer in sub-Saharan Africans, but clearly different from breast cancer in Europeans, whose cancers are dominantly postmenopausal in character. At presention most Libyan patients have locally advanced disease, which is associated with poor survival rates. Nuclear morphometry and image DNA cytometry agree with earlier published data in the Finnish population and indicate that nuclear size and DNA analysis of nuclear content can be used to increase the cytological sensitivity and specificity in doubtful breast lesions, particularly when free cell sampling method is used. Combination of the morphometric data with earlier free cell data gave the following diagnostic guidelines: Range of overlap in free cell samples: 55 μm2 -71 μm2. Cut-off values for diagnostic purposes: Mean nuclear area (MNA) >54 μm2 for 100% detection of malignant cases (specificity 84 %), MNA < 72 μm2 for 100% detection of benign cases (sensitivity 91%). Histomorphometry showed a significant correlation between the MNA and most clinicopathological features, with the strongest association observed for histological grade (p <0.0001). MNA seems to be a prognosticator in Libyan breast cancer (Pearson’s test r = - 0.29, p = 0.019), but at lower level of significance than in the European material. A corresponding relationship was not found in shape-related morphometric features. ER and PR staining scores were in correlation with the clinical stage (p= 0.017, and 0.015, respectively), and also associated with lymph node negative patients (p=0.03, p=0.05, respectively). Receptor-positive (HR+) patients had a better survival. The fraction of HR+ cases among Libyan breast cancers is about the same as the fraction of positive cases in European breast cancer. The study suggests that also weak staining (corresponding to as few as 1% positive cells) has prognostic value. The prognostic significance may be associated with the practice to use antihormonal therapy in HR+ cases. The low survival and advanced presentation is associated with active cell proliferation, atypical nuclear morphology and aneuploid nuclear DNA content in Libyan breast cancer patients. The findings support the idea that breast cancer is not one type of disease, but should probably be classified into premenopausal and post menopausal types.
Resumo:
Abstract The aim of this study was to evaluate the effect of phytogenic additives and glutamine plus glutamic acid, associated or not, on histomorphometry of bursa of Fabricius and small intestine, oocyst count and lesion scores, and carbon turnover of duodenal mucosa of broiler chickens infected with Eimeria acervulina. A total of 450 male broiler chickens was distributed into a completely randomized design with six treatments and three replications. Treatments consisted of control diet (CD); CD + coccidiosis vaccine; CD + antibiotic performance enhancers and anticoccidial (APE/AC); CD + glutamine and glutamic acid (Gln/Glu); CD + phytogenic additives (PA); CD + Gln/Glu + PA. Birds on treatment CD + vaccine were vaccinated via drinking water at three days of age against coccidiosis. At 16 days of age all birds of all treatments were inoculated orally and individually with 500,000 oocysts of Eimeria acervulina. There was no treatment effect on lesion score in the intestinal epithelium of birds. The smaller number of excreted oocysts was observed in groups of birds fed diets containing APE/AC and PA. Were observed better results of villus height and crypt depth for duodenum and ileum of birds of treatments containing Gln/Glu at 7 days of age, and Gln/Glu and PA at 21 days of age. Higher percentage of cortical area from bursa follicles was observed in birds fed diets supplemented with Gln/Glu and PA at 7, 14 and 21 days of age. Increased turnover of intestinal mucosa was observed in treatments containing Gln/Glu, indicating acceleration in development and regeneration of damaged tissue. Glutamine plus glutamic acid and phytogenic additives can provide improvements to structure, and thus to intestinal function, as well as to better immune response against the infectious challenges. Phytogenic additives can be used for coccidiosis control of broiler chickens where the use of antibiotic performance enhancers and anticoccidials is prohibited.
Resumo:
The healing of colorectal anastomoses after irradiation therapy continues to be a major concern. The authors evaluated the healing of rectal anastomoses in a rat model after a preoperative 500-cGy dose of cobalt60 irradiation. Thirty-six male Wistar rats were divided into two equal groups: control (group A), and irradiation group (group B). Group B received a single 500-cGy dose of irradiation, and a rectal resection and end-to-end anastomosis was performed in both groups on the 7th day after irradiation. Parameters of the healing process included bursting pressure and collagen content on the 5th, 7th, and 14th days after surgery. In the irradiation group, the mean bursting pressure on the 5th, 7th, and 14th days was 116, 218, and 273 mmHg, respectively. The collagen content assessed by histomorphometry was 9.0, 20.8, and 32%, respectively. In contrast, the control group had a mean bursting pressure of 175, 225 and 263 mmHg, and a collagen content of 17.8, 28.1, and 32.1%, respectively. The adverse effect of irradiation on healing was detectable only on the 5th postoperative day, as demonstrated by lower bursting pressure (P < 0.013) and collagen content (P < 0.008). However, there was no failure of anastomotic healing such as leakage or dehiscence due to irradiation. We conclude that a single preoperative 500-cGy dose of irradiation delays the healing of rectal anastomosis in rats.
Resumo:
The complete spectrum of estrogen vascular effects remains unclear. In particular, estrogen effects in the vascular response to profound injury in males have not been explored in detail. Therefore, we submitted 44 male New Zealand rabbits weighing 3.4 ± 0.6 kg to overdistention balloon injury of the right iliac artery. Rabbits were given 17ß-estradiol (5.45 µmol/day, sc) or vehicle for 7 days before and 14 days after injury, when the arteries were examined by post-mortem histomorphometry. Arteriographic caliber was assessed in vivo at baseline and before sacrifice. On day 14 after injury, in vivo arteriographic caliber (baseline = 2.44 ± 0.43 mm) was decreased by 23.1 ± 0.1% in controls and by 44.5 ± 0.1% in estrogen-treated rabbits (P < 0.001). Neither the neointimal area nor the neointima/media area ratio changed after estrogen treatment. Collagen fraction was increased in the media and neointima of estrogen-treated rabbits vs control (1.38 ± 1.30 vs 0.35 ± 0.67, respectively, P = 0.01). Taken together, these findings suggest that estrogen increased negative vascular remodeling. Transcription of endothelial and inducible nitric oxide synthases (eNOS and iNOS) was analyzed by RT-PCR. eNOS mRNA expression was marginally increased after estrogen (P = 0.07) and injury. iNOS mRNA was increased 2- to 3-fold on day 14 after injury. With estrogen treatment, iNOS mRNA increased in uninjured arteries and exhibited a further 5.5-fold increase after injury. We concluded that estrogen increased lumen loss after balloon injury in male rabbits, likely by increased negative remodeling, which may be related to increased iNOS transcriptional rates.
Resumo:
Low bone remodeling and relatively low serum parathyroid hormone (PTH) levels characterize adynamic bone disease (ABD). The impact of renal transplantation (RT) on the course of ABD is unknown. We studied prospectively 13 patients with biopsy-proven ABD after RT. Bone histomorphometry and bone mineral density (BMD) measurements were performed in the 1st and 12th months after RT. Serum PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and osteocalcin were measured regularly throughout the study. Serum PTH levels were slightly elevated at transplantation, normalized at the end of the third month and remained stable thereafter. Bone biopsies performed in the first month after RT revealed low bone turnover in all patients, with positive bone aluminum staining in 5. In the 12th month, second biopsies were performed on 12 patients. Bone histomorphometric dynamic parameters improved in 9 and were completely normalized in 6, whereas no bone mineralization was detected in 3 of these 12 patients. At 12 months post-RT, no bone aluminum was detected in any patient. We also found a decrease in lumbar BMD and an increase in femoral BMD. Patients suffering from ABD, even those with a reduction in PTH levels, may present partial or complete recovery of bone turnover after successful renal transplantation. However, it is not possible to positively identify the mechanisms responsible for the improvement. Identifying these mechanisms should lead to a better understanding of the physiopathology of ABD and to the development of more effective treatments.
Resumo:
We investigated whether liver injury by dual exposure to ethanol and carbon tetrachloride (EtOH + CCl4) for 15 weeks would persist after hepatotoxic agents were removed (EtOH + CCl4/8wR). After 15 weeks of hepatic injury with ethanol (5.5%, m/v) and carbon tetrachloride (0.05, mL/kg, ip), 5 of 11 female Wistar rats were sacrificed. The other 6 rats were maintained for an additional 8 weeks without hepatotoxic agents. Ultrasonography showed increased liver echogenicity and dilation of portal vein caliber in both groups (EtOH + CCl4: 0.22 ± 0.01 cm, P < 0.001; EtOH + CCl4/8wR: 0.21 ± 0.02 cm, P < 0.01) vs control (0.16 ± 0.02 cm). Histopathology showed regenerative nodules in both experimental groups. Histomorphometry revealed increased fibrosis content in both groups (EtOH + CCl4: 12.6 ± 2.64%, P < 0.001; EtOH + CCl4/8wR: 10.4 ± 1.36%, P < 0.05) vs control (2.2 ± 1.21%). Collagen types I and III were increased in groups EtOH + CCl4 (collagen I: 2.5 ± 1.3%, P < 0.01; collagen III: 1.3 ± 0.2%, P < 0.05) and EtOH + CCl4/8wR (collagen I: 1.8 ± 0.06%, P < 0.05; collagen III: 1.5 ± 0.8%, P < 0.01) vs control (collagen I: 0.38 ± 0.11%; collagen III: 0.25 ± 0.06%). Tissue transglutaminase increased in both groups (EtOH + CCl4: 66.4 ± 8%, P < 0.01; EtOH + CCl4/8wR: 58.8 ± 21%, P < 0.01) vs control (7.9 ± 0.8%). Cirrhosis caused by the association of CCl4-EtOH remained for at least 8 weeks after removal of these hepatotoxic agents. Ultrasound images can be a useful tool to evaluate advanced hepatic alterations.
Resumo:
The aim of the present study was to compare healing obtained with biomembranes with the natural healing process (sham) using biochemical and immunohistological assays. C57BL/6 mice were divided into 4 groups of 15 mice each and received different subcutaneous implants: natural latex biomembrane (NLB), denatured latex (DL), expanded polytetrafluorethylene (ePTFE), or sham. On the 2nd, 7th, and 14th days post-treatment, 5 mice per group were sacrificed and biopsied for the following measurements: oxidative stress based on malondialdehyde (MDA), myeloperoxidase (MPO) and hydrogen peroxide by the method of ferrous oxidation-xylenol orange (FOX), as well as glutathione and total proteins; histological evaluation to enumerate inflammatory cells, fibroblasts, blood vessels, and collagen, and immunohistochemical staining for inducible nitric oxide synthase, interleukin-1β, vascular endothelial growth factor (VEGF), and transforming growth factor-β1 (TGF-β1). On day 2 post-treatment, NLB stimulated a dense inflammatory infiltrate mainly consisting of polymorphonuclear cells, as indicated by increased MPO (P < 0.05), but oxidative stress due to MDA was not observed until the 7th day (P < 0.05). The number of blood vessels was greater in NLB (P < 0.05) and DL (P < 0.05) mice compared to sham animals on day 14. NLB induced fibroplasia by day 14 (P < 0.05) with low expression of TGF-β1 and collagenesis. Thus, NLB significantly induced the inflammatory phase of healing mediated by oxidative stress, which appeared to influence the subsequent phases such as angiogenesis (with low expression of VEGF) and fibroplasia (independent of TGF-β1) without influencing collagenesis.
Resumo:
Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis.
Resumo:
A sprained ankle is a common musculoskeletal sports injury and it is often treated by immobilization of the joint. Despite the beneficial effects of this therapeutic measure, the high prevalence of residual symptoms affects the quality of life, and remobilization of the joint can reverse this situation. The aim of this study was to analyze the effects of immobilization and remobilization on the ankle joint of Wistar rats. Eighteen male rats had their right hindlimb immobilized for 15 days, and were divided into the following groups: G1, immobilized; G2, remobilized freely for 14 days; and G3, remobilized by swimming and jumping in water for 14 days, performed on alternate days, with progression of time and a series of exercises. The contralateral limb was the control. After the experimental period, the ankle joints were processed for microscopic analysis. Histomorphometry did not show any significant differences between the control and immobilized/remobilized groups and members, in terms of number of chondrocytes and thickness of the articular cartilage of the tibia and talus. Morphological analysis of animals from G1 showed significant degenerative lesions in the talus, such as exposure of the subchondral bone, flocculation, and cracks between the anterior and mid-regions of the articular cartilage and the synovial membrane. Remobilization by therapeutic exercise in water led to recovery in the articular cartilage and synovial membrane of the ankle joint when compared with free remobilization, and it was shown to be an effective therapeutic measure in the recovery of the ankle joint.
Resumo:
We aimed to investigate the effects of an anti-tumor necrosis factor-α antibody (ATNF) on cartilage and subchondral bone in a rat model of osteoarthritis. Twenty-four rats were randomly divided into three groups: sham-operated group (n=8); anterior cruciate ligament transection (ACLT)+normal saline (NS) group (n=8); and ACLT+ATNF group (n=8). The rats in the ACLT+ATNF group received subcutaneous injections of ATNF (20 μg/kg) for 12 weeks, while those in the ACLT+NS group received NS at the same dose for 12 weeks. All rats were euthanized at 12 weeks after surgery and specimens from the affected knees were harvested. Hematoxylin and eosin staining, Masson's trichrome staining, and Mankin score assessment were carried out to evaluate the cartilage status and cartilage matrix degradation. Matrix metalloproteinase (MMP)-13 immunohistochemistry was performed to assess the cartilage molecular metabolism. Bone histomorphometry was used to observe the subchondral trabecular microstructure. Compared with the rats in the ACLT+NS group, histological and Mankin score analyses showed that ATNF treatment reduced the severity of the cartilage lesions and led to a lower Mankin score. Immunohistochemical and histomorphometric analyses revealed that ATNF treatment reduced the ACLT-induced destruction of the subchondral trabecular microstructure, and decreased MMP-13 expression. ATNF treatment may delay degradation of the extracellular matrix via a decrease in MMP-13 expression. ATNF treatment probably protects articular cartilage by improving the structure of the subchondral bone and reducing the degradation of the cartilage matrix.
Resumo:
Osteoporosis has become a serious global public health issue. Hence, osteoporotic fracture healing has been investigated in several previous studies because there is still controversy over the effect osteoporosis has on the healing process. The current study aimed to analyze two different periods of bone healing in normal and osteopenic rats. Sixty, 7-week-old female Wistar rats were randomly divided into four groups: unrestricted and immobilized for 2 weeks after osteotomy (OU2), suspended and immobilized for 2 weeks after osteotomy (OS2), unrestricted and immobilized for 6 weeks after osteotomy (OU6), and suspended and immobilized for 6 weeks after osteotomy (OS6). Osteotomy was performed in the middle third of the right tibia 21 days after tail suspension, when the osteopenic condition was already set. The fractured limb was then immobilized by orthosis. Tibias were collected 2 and 6 weeks after osteotomy, and were analyzed by bone densitometry, mechanical testing, and histomorphometry. Bone mineral density values from bony calluses were significantly lower in the 2-week post-osteotomy groups compared with the 6-week post-osteotomy groups (multivariate general linear model analysis, P<0.000). Similarly, the mechanical properties showed that animals had stronger bones 6 weeks after osteotomy compared with 2 weeks after osteotomy (multivariate general linear model analysis, P<0.000). Histomorphometry indicated gradual bone healing. Results showed that osteopenia did not influence the bone healing process, and that time was an independent determinant factor regardless of whether the fracture was osteopenic. This suggests that the body is able to compensate for the negative effects of suspension.
Resumo:
Introduction: New reconstructive and less invasive methods have been searched to optimize bone formation and osseointegration of dental implants in maxillary sinus augmentation. Purpose: The aim of the presented ovine split-mouth study was to compare bovine bone mineral (BBM) alone and in combination with mesenchymal stem cells (MSCs) regarding their potential in sinus augmentation. Material and Methods: Bilateral sinus floor augmentations were performed in six adult sheep. BBM and MSCs were placed into the test side and only BBM in the contra-lateral control side of each sheep. Animals were sacrificed after 8 and 16 weeks. Augmentation sites were analyzed by computed tomography, histology, and histomorphometry. Results: The initial volumes of both sides were similar and did not change significantly with time. A tight connection between the particles of BBM and the new bone was observed histologically. Bone formation was significantly (p = 0.027) faster by 49% in the test sides. Conclusion: The combination of BBM and MSCs accelerated new bone formation in this model of maxillary sinus augmentation. This could allow early placement of implants.