886 resultados para Hiperostose cortical congênita


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary microcephaly is an autosomal recessive disorder characterized by smaller than normal brain size and mental retardation. It is genetically heterogeneous with seven loci: MCPH1-MCPH7. We have previously reported genetic analysis of 35 families, including the identification of the MCPH7 gene STIL. Of the 35 families, three families showed linkage to the MCPH2 locus. Recent whole-exome sequencing studies have shown that the WDR62 gene, located in the MCPH2 candidate region, is mutated in patients with severe brain malformations. We therefore sequenced the WDR62 gene in our MCPH2 families and identified two novel homozygous protein truncating mutations in two families. Affected individuals in the two families had pachygyria, microlissencephaly, band heterotopias, gyral thickening, and dysplastic cortex. Using immunofluorescence study, we showed that, as with other MCPH proteins, WDR62 localizes to centrosomes in A549, HepG2, and HaCaT cells. In addition, WDR62 was also localized to nucleoli. Bioinformatics analysis predicted two overlapping nuclear localization signals and multiple WD-40 repeats in WDR62. Two other groups have also recently identified WDR62 mutations in MCPH2 families. Our results therefore add further evidence that WDR62 is the MCPH2 gene. The present findings will be helpful in genetic diagnosis of patients linked to the MCPH2 locus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Converging evidence from transgenic animal models of amyotrophic lateral sclerosis (ALS) and human studies suggest alterations in excitability of the motor neurons in ALS. Specifically, in studies on human subjects with ALS the motor cortex was reported to be hyperexcitable. The present study was designed to test the hypothesis that infusion of cerebrospinal fluid from patients with sporadic ALS (ALS-CSF) into the rat brain ventricle can induce hyperexcitability and structural changes in the motor cortex leading to motor dysfunction. A robust model of sporadic ALS was developed experimentally by infusing ALS-CSF into the rat ventricle. The effects of ALS-CSF at the single neuron level were examined by recording extracellular single unit activity from the motor cortex while rats were performing a reach to grasp task. We observed an increase in the firing rate of the neurons of the motor cortex in rats infused with ALS-CSF compared to control groups. This was associated with impairment in a specific component of reach with alterations in the morphological characteristics of the motor cortex. It is likely that the increased cortical excitability observed in the present study could be the result of changes in the intrinsic properties of motor cortical neurons, a dysfunctional inhibitory mechanism and/or an underlying structural change culminating in a behavioral deficit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of cortical bone in the proximal femur is believed to be a critical component in determining fracture resistance. Current CT technology is limited in its ability to measure cortical thickness, especially in the sub-millimetre range which lies within the point spread function of today's clinical scanners. In this paper, we present a novel technique that is capable of producing unbiased thickness estimates down to 0.3mm. The technique relies on a mathematical model of the anatomy and the imaging system, which is fitted to the data at a large number of sites around the proximal femur, producing around 17,000 independent thickness estimates per specimen. In a series of experiments on 16 cadaveric femurs, estimation errors were measured as -0.01+/-0.58mm (mean+/-1std.dev.) for cortical thicknesses in the range 0.3-4mm. This compares with 0.25+/-0.69mm for simple thresholding and 0.90+/-0.92mm for a variant of the 50% relative threshold method. In the clinically relevant sub-millimetre range, thresholding increasingly fails to detect the cortex at all, whereas the new technique continues to perform well. The many cortical thickness estimates can be displayed as a colour map painted onto the femoral surface. Computation of the surfaces and colour maps is largely automatic, requiring around 15min on a modest laptop computer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Type-1 cannabinoid receptors (CB1R) are enriched in the hypothalamus, particularly in the ventromedial hypothalamic nucleus (VMH) that participates in homeostatic and behavioral functions including food intake. Although CB1R activation modulates excitatory and inhibitory synaptic transmission in the brain, CB1R contribution to the molecular architecture of the excitatory and inhibitory synaptic terminals in the VMH is not known. Therefore, the aim of this study was to investigate the precise subcellular distribution of CB1R in the VMH to better understand the modulation exerted by the endocannabinoid system on the complex brain circuitries converging into this nucleus. Methodology/Principal Findings: Light and electron microscopy techniques were used to analyze CB1R distribution in the VMH of CB1R-WT, CB1R-KO and conditional mutant mice bearing a selective deletion of CB1R in cortical glutamatergic (Glu-CB1R-KO) or GABAergic neurons (GABA-CB1R-KO). At light microscopy, CB1R immunolabeling was observed in the VMH of CB1R-WT and Glu-CB1R-KO animals, being remarkably reduced in GABA-CB1R-KO mice. In the electron microscope, CB1R appeared in membranes of both glutamatergic and GABAergic terminals/preterminals. There was no significant difference in the percentage of CB1R immunopositive profiles and CB1R density in terminals making asymmetric or symmetric synapses in CB1R-WT mice. Furthermore, the proportion of CB1R immunopositive terminals/preterminals in CB1R-WT and Glu-CB1R-KO mice was reduced in GABA-CB1R-KO mutants. CB1R density was similar in all animal conditions. Finally, the percentage of CB1R labeled boutons making asymmetric synapses slightly decreased in Glu-CB1R-KO mutants relative to CB1R-WT mice, indicating that CB1R was distributed in cortical and subcortical excitatory synaptic terminals. Conclusions/Significance: Our anatomical results support the idea that the VMH is a relevant hub candidate in the endocannabinoid-mediated modulation of the excitatory and inhibitory neurotransmission of cortical and subcortical pathways regulating essential hypothalamic functions for the individual's survival such as the feeding behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temporal structure of neuronal spike trains in the visual cortex can provide detailed information about the stimulus and about the neuronal implementation of visual processing. Spike trains recorded from the macaque motion area MT in previous studies (Newsome et al., 1989a; Britten et al., 1992; Zohary et al., 1994) are analyzed here in the context of the dynamic random dot stimulus which was used to evoke them. If the stimulus is incoherent, the spike trains can be highly modulated and precisely locked in time to the stimulus. In contrast, the coherent motion stimulus creates little or no temporal modulation and allows us to study patterns in the spike train that may be intrinsic to the cortical circuitry in area MT. Long gaps in the spike train evoked by the preferred direction motion stimulus are found, and they appear to be symmetrical to bursts in the response to the anti-preferred direction of motion. A novel cross-correlation technique is used to establish that the gaps are correlated between pairs of neurons. Temporal modulation is also found in psychophysical experiments using a modified stimulus. A model is made that can account for the temporal modulation in terms of the computational theory of biological image motion processing. A frequency domain analysis of the stimulus reveals that it contains a repeated power spectrum that may account for psychophysical and electrophysiological observations.

Some neurons tend to fire bursts of action potentials while others avoid burst firing. Using numerical and analytical models of spike trains as Poisson processes with the addition of refractory periods and bursting, we are able to account for peaks in the power spectrum near 40 Hz without assuming the existence of an underlying oscillatory signal. A preliminary examination of the local field potential reveals that stimulus-locked oscillation appears briefly at the beginning of the trial.