966 resultados para Hilbert modules


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a class of self-adjoint compact operators in Hilbert spaces related to their truncated versions with finite-dimensional ranges. The comparisons are established in terms of worst-case norm errors of the composite operators generated from iterated computations. Some boundedness properties of the worst-case norms of the errors in their respective fixed points in which they exist are also given. The iterated sequences are expanded in separable Hilbert spaces through the use of numerable orthonormal bases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la presente tesis doctoral se ha estudiado la integración del proceso de producción de hidrógeno con su purificación mediante el empleo de membranas selectivas de hidrógeno. La producción de hidrógeno se realiza empleando catalizadores no convencionales de níquel soportado sobre magnesia y alúmina en un reactor catalítico. Se analiza la actividad de los catalizadores y la producción de hidrógeno mediante distintos procesos con metano como son la oxidación parcial catalítica (OPC), OPC húmeda y reformadoLa purificación de hidrógeno se realiza en un módulo provisto de una membrana selectiva de hidrógeno de PdCu depositado en un soporte poroso cerámico. Una vez optimizada su preparación mediante deposición no electrolítica se caracterizan. Para ello se determina su permeabilidad a distintas temperaturas y realizando ciclos térmicos en atmósferas inerte y de hidrógeno, que puede fragilizar el metal. Una vez preparados los catalizadores y las membranas se integran los dos sistemas y se determinan los parámetros de operación óptimos como la presión de la línea de alimentación y el caudal de gas de arrastre en el módulo de membrana. Ambos parámetros se optimizan para lograr la máxima recuperación de hidrógeno en el módulo de membrana. Por últimos se realizan ensayos completos de producción y purificación, que permiten observar el rendimiento del sistema y también el efecto que los compuestos de la mezcla compleja alimentada a las membranas tienen en su comportamiento. Para concluir la integración de procesos se realizan ensayos añadiendo azufre de forma que el sistema sea más similar al proceso real. Esto permite también analizar el efecto del azufre tanto en los catalizadores como en las membranas.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.

In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.

A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.

For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previously suggested birefringence-customized modular optical interconnect technique is extended for lens-free relay operation. Various lens-free relay imaging models are developed. We claim that the lens-free relay system is important in simplifying an optical interconnect system whenever the imaging conditions permit. To verify the validity of various proposed concepts, we experimentally implemented some 8 x 8 optical permutation modules. High-power efficiency and low channel cross talk were experimentally observed. In general, the larger the channel spacing, the less the cross talk. A quantitative cross-talk measurement of the lens-free relay system shows that, for a fixed channel width of 0.5 mm and channel spacings of 0.5, 1, and 2 mm, a less than -20-dB cross-talk performance can be guaranteed for lens-free relay distances of 40, 280, and 430 mm, respectively. (C) 1998 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis an extensive study is made of the set P of all paranormal operators in B(H), the set of all bounded endomorphisms on the complex Hilbert space H. T ϵ B(H) is paranormal if for each z contained in the resolvent set of T, d(z, σ(T))//(T-zI)-1 = 1 where d(z, σ(T)) is the distance from z to σ(T), the spectrum of T. P contains the set N of normal operators and P contains the set of hyponormal operators. However, P is contained in L, the set of all T ϵ B(H) such that the convex hull of the spectrum of T is equal to the closure of the numerical range of T. Thus, NPL.

If the uniform operator (norm) topology is placed on B(H), then the relative topological properties of N, P, L can be discussed. In Section IV, it is shown that: 1) N P and L are arc-wise connected and closed, 2) N, P, and L are nowhere dense subsets of B(H) when dim H ≥ 2, 3) N = P when dimH ˂ ∞ , 4) N is a nowhere dense subset of P when dimH ˂ ∞ , 5) P is not a nowhere dense subset of L when dimH ˂ ∞ , and 6) it is not known if P is a nowhere dense subset of L when dimH ˂ ∞.

The spectral properties of paranormal operators are of current interest in the literature. Putnam [22, 23] has shown that certain points on the boundary of the spectrum of a paranormal operator are either normal eigenvalues or normal approximate eigenvalues. Stampfli [26] has shown that a hyponormal operator with countable spectrum is normal. However, in Theorem 3.3, it is shown that a paranormal operator T with countable spectrum can be written as the direct sum, N ⊕ A, of a normal operator N with σ(N) = σ(T) and of an operator A with σ(A) a subset of the derived set of σ(T). It is then shown that A need not be normal. If we restrict the countable spectrum of T ϵ P to lie on a C2-smooth rectifiable Jordan curve Go, then T must be normal [see Theorem 3.5 and its Corollary]. If T is a scalar paranormal operator with countable spectrum, then in order to conclude that T is normal the condition of σ(T) ≤ Go can be relaxed [see Theorem 3.6]. In Theorem 3.7 it is then shown that the above result is not true when T is not assumed to be scalar. It was then conjectured that if T ϵ P with σ(T) ≤ Go, then T is normal. The proof of Theorem 3.5 relies heavily on the assumption that T has countable spectrum and cannot be generalized. However, the corollary to Theorem 3.9 states that if T ϵ P with σ(T) ≤ Go, then T has a non-trivial lattice of invariant subspaces. After the completion of most of the work on this thesis, Stampfli [30, 31] published a proof that a paranormal operator T with σ(T) ≤ Go is normal. His proof uses some rather deep results concerning numerical ranges whereas the proof of Theorem 3.5 uses relatively elementary methods.