911 resultados para Higher-level visual processing
Resumo:
Includes bibliographical references.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Background: Contemporary neuropsychological studies suggest that cerebellar lesions may impact upon higher-level cognitive functioning via mechanisms of crossed cerebello-cerebral diaschisis. Accordingly, right cerebellar lesions have been previously associated with linguistic impairments such as reduced word fluency and agrammatic output. Recently, however, neuroimaging investigations have also identified ipsilateral cerebral hypoperfusion as a consequence of cerebellar lesions, implicating a potential role for the left cerebellum in the mediation of language processes. Aims: The purpose of this research was to investigate the effects of left cerebellar lesions of vascular origin, on general as well as high-level language skills. Methods & Procedures: Linguistic profiles were compiled for five individuals with left primary cerebellar lesions utilising a comprehensive language test battery. Individual scores relevant to each subtest were compared to a group of non-neurologically impaired controls. The criterion for anomalous performance was established as greater than or equal to 1.5 SD below the mean of the control group. Outcomes & Results: The findings of this research suggest that higher-level language deficits may result from left primary cerebellar lesions. All participants demonstrated deficits on measures of word fluency, sentence construction within a set context, producing word definitions, and producing multiple definitions for the same word. Deficits were also noted for several participants on measures of understanding figurative language, forming word associations, identifying and correcting semantic absurdities, and producing synonyms and antonyms. Conclusions: The results presented challenge the notion of a lateralised linguistic cerebellum, supporting a potential role for the left as well as right cerebellar hemispheres in the regulation of language processes, presumably via cerebellar-basal ganglia/thalamo-cortical pathways.
Resumo:
Although advertising is pervasive in our daily, it proves to be not necessarily efficient all the times due to bad conditions or bad contexts of reception. Indeed, the communication process might be jeopardized at its very last stage because of advertising exposure quality. However critical it may be, ad exposure quality is not very much examined by researchers or practitioners. In this paper, we investigate how tiredness combined with ad complexity might influence the way consumers extract and process ad elements. Investigating tiredness is useful because it is a common daily state experienced by everyone at various moments of the day. And although it might drastically alter ad reception, it has not been studied in advertising for the moment. In this regards, we observe eye movement patterns of consumers viewing simple or complex advertisements being tired or not. We surprisingly find that tired subjects viewing complex ads don’t adopt a lessening effort visual strategy. They rather use a resource demanding one. We assume that the Sustained Attention strategy occurring is a kind of adaptive strategy allowing to deal with an anticipated lack of resource.
Resumo:
We compared judgements of the simultaneity or asynchrony of visual stimuli in individuals with autism spectrum disorders (ASD) and typically-developing controls using Magnetoencephalography (MEG). Two vertical bars were presented simultaneously or non-simultaneously with two different stimulus onset delays. Participants with ASD distinguished significantly better between real simultaneity (0 ms delay between two stimuli) and apparent simultaneity (17 ms delay between two stimuli) than controls. In line with the increased sensitivity, event-related MEG activity showed increased differential responses for simultaneity versus apparent simultaneity. The strongest evoked potentials, observed over occipital cortices at about 130 ms, were correlated with performance differences in the ASD group only. Superior access to early visual brain processes in ASD might underlie increased resolution of visual events in perception. © 2012 Springer Science+Business Media New York.
Resumo:
2000 Mathematics Subject Classification: 62P10, 92C20
Resumo:
Prevalent face recognition difficulties in Alzheimer’s disease (AD) have typically been attributed to the underlying episodic and semantic memory impairment. The aim of the current study was to determine if AD patients are also impaired at the perceptual level for faces, more specifically at extracting a visual representation of an individual face. To address this question, we investigated the matching of simultaneously presented individual faces and of other nonface familiar shapes (cars), at both upright and inverted orientation, in a group of mild AD patients and in a group of healthy older controls matched for age and education. AD patients showed a reduced inversion effect (i.e., larger performance for upright than inverted stimuli) for faces, but not for cars, both in terms of error rates and response times. While healthy participants showed a much larger decrease in performance for faces than for cars with inversion, the inversion effect did not differ significantly for faces and cars in AD. This abnormal inversion effect for faces was observed in a large subset of individual patients with AD. These results suggest that AD patients have deficits in higher-level visual processes, more specifically at perceiving individual faces, a function that relies on holistic representations specific to upright face stimuli. These deficits, combined with their memory impairment, may contribute to the difficulties in recognizing familiar people that are often reported in patients suffering from the disease and by their caregivers.
Resumo:
The abundance of visual data and the push for robust AI are driving the need for automated visual sensemaking. Computer Vision (CV) faces growing demand for models that can discern not only what images "represent," but also what they "evoke." This is a demand for tools mimicking human perception at a high semantic level, categorizing images based on concepts like freedom, danger, or safety. However, automating this process is challenging due to entropy, scarcity, subjectivity, and ethical considerations. These challenges not only impact performance but also underscore the critical need for interoperability. This dissertation focuses on abstract concept-based (AC) image classification, guided by three technical principles: situated grounding, performance enhancement, and interpretability. We introduce ART-stract, a novel dataset of cultural images annotated with ACs, serving as the foundation for a series of experiments across four key domains: assessing the effectiveness of the end-to-end DL paradigm, exploring cognitive-inspired semantic intermediaries, incorporating cultural and commonsense aspects, and neuro-symbolic integration of sensory-perceptual data with cognitive-based knowledge. Our results demonstrate that integrating CV approaches with semantic technologies yields methods that surpass the current state of the art in AC image classification, outperforming the end-to-end deep vision paradigm. The results emphasize the role semantic technologies can play in developing both effective and interpretable systems, through the capturing, situating, and reasoning over knowledge related to visual data. Furthermore, this dissertation explores the complex interplay between technical and socio-technical factors. By merging technical expertise with an understanding of human and societal aspects, we advocate for responsible labeling and training practices in visual media. These insights and techniques not only advance efforts in CV and explainable artificial intelligence but also propel us toward an era of AI development that harmonizes technical prowess with deep awareness of its human and societal implications.
Resumo:
La perception est décrite comme l’ensemble des processus permettant au cerveau de recueillir et de traiter l’information sensorielle. Un traitement perceptif atypique se retrouve souvent associé au phénotype autistique habituellement décrit en termes de déficits des habilités sociales et de communication ainsi que par des comportements stéréotypés et intérêts restreints. Les particularités perceptives des autistes se manifestent à différents niveaux de traitement de l’information; les autistes obtiennent des performances supérieures à celles des non autistes pour discriminer des stimuli simples, comme des sons purs, ou encore pour des tâches de plus haut niveau comme la détection de formes enchevêtrées dans une figure complexe. Spécifiquement pour le traitement perceptif de bas niveau, on rapporte une dissociation de performance en vision. En effet, les autistes obtiennent des performances supérieures pour discriminer les stimuli définis par la luminance et inférieures pour les stimuli définis par la texture en comparaison à des non autistes. Ce pattern dichotomique a mené à l’élaboration d’une hypothèse suggérant que l’étendue (ou complexité) du réseau de régions corticales impliquées dans le traitement des stimuli pourrait sous-tendre ces différences comportementales. En effet, les autistes obtiennent des performances supérieures pour traiter les stimuli visuels entièrement décodés au niveau d’une seule région corticale (simples) et inférieures pour les stimuli dont l’analyse requiert l’implication de plusieurs régions corticales (complexes). Un traitement perceptif atypique représente une caractéristique générale associée au phénotype autistique, avec de particularités rapportées tant dans la modalité visuelle qu’auditive. Étant donné les parallèles entre ces deux modalités sensorielles, cette thèse vise à vérifier si l’hypothèse proposée pour expliquer certaines particularités du traitement de l’information visuelle peut possiblement aussi caractériser le traitement de l’information auditive dans l’autisme. Le premier article (Chapitre 2) expose le niveau de performance des autistes, parfois supérieur, parfois inférieur à celui des non autistes lors du traitement de l’information auditive et suggère que la complexité du matériel auditif à traiter pourrait être en lien avec certaines des différences observées. Le deuxième article (Chapitre 3) présente une méta-analyse quantitative investiguant la représentation au niveau cortical de la complexité acoustique chez les non autistes. Ce travail confirme l’organisation fonctionnelle hiérarchique du cortex auditif et permet d’identifier, comme en vision, des stimuli auditifs pouvant être définis comme simples et complexes selon l’étendue du réseau de régions corticales requises pour les traiter. Le troisième article (Chapitre 4) vérifie l’extension des prédictions de l’hypothèse proposée en vision au traitement de l’information auditive. Spécifiquement, ce projet compare les activations cérébrales sous-tendant le traitement des sons simples et complexes chez des autistes et des non autistes. Tel qu’attendu, les autistes montrent un patron d’activité atypique en réponse aux stimuli complexes, c’est-à-dire ceux dont le traitement nécessitent l’implication de plusieurs régions corticales. En bref, l’ensemble des résultats suggèrent que les prédictions de l’hypothèse formulée en vision peuvent aussi s’appliquer en audition et possiblement expliquer certaines particularités du traitement de l’information auditive dans l’autisme. Ce travail met en lumière des différences fondamentales du traitement perceptif contribuant à une meilleure compréhension des mécanismes d’acquisition de l’information dans cette population.
Resumo:
Breakthrough advances in microprocessor technology and efficient power management have altered the course of development of processors with the emergence of multi-core processor technology, in order to bring higher level of processing. The utilization of many-core technology has boosted computing power provided by cluster of workstations or SMPs, providing large computational power at an affordable cost using solely commodity components. Different implementations of message-passing libraries and system softwares (including Operating Systems) are installed in such cluster and multi-cluster computing systems. In order to guarantee correct execution of message-passing parallel applications in a computing environment other than that originally the parallel application was developed, review of the application code is needed. In this paper, a hybrid communication interfacing strategy is proposed, to execute a parallel application in a group of computing nodes belonging to different clusters or multi-clusters (computing systems may be running different operating systems and MPI implementations), interconnected with public or private IP addresses, and responding interchangeably to user execution requests. Experimental results demonstrate the feasibility of this proposed strategy and its effectiveness, through the execution of benchmarking parallel applications.
Resumo:
The attention deficit/hyperactivity disorder (ADHD) shows an increased prevalence in arrested offenders compared to the normal population. The aim of the present study was to investigate whether ADHD symptoms are a major risk factor for criminal behaviour, or whether further deficits, mainly abnormalities in emotion-processing, have to be considered as important additional factors that promote delinquency in the presence of ADHD symptomatology. Event related potentials (ERPs) of 13 non-delinquent and 13 delinquent subjects with ADHD and 13 controls were compared using a modified visual Go/Nogo continuous performance task (VCPT) and a newly developed version of the visual CPT that additionally requires emotional evaluation (ECPT). ERPs were analyzed regarding their topographies and Global Field Power (GFP). Offenders with ADHD differed from non-delinquent subjects with ADHD in the ERPs representing higher-order visual processing of objects and faces (N170) and facial affect (P200), and in late monitoring and evaluative functions (LPC) of behavioural response inhibition. Concerning neural activity thought to reflect the allocation of neural resources and cognitive processing capability (P300 Go), response inhibition (P300 Nogo), and attention/expectancy (CNV), deviances were observable in both ADHD groups and may thus be attributed to ADHD rather than to delinquency. In conclusion, ADHD symptomatology may be a risk factor for delinquency, since some neural information processing deficits found in ADHD seemed to be even more pronounced in offenders with ADHD. However, our results suggest additional risk factors consisting of deviant higher-order visual processing, especially of facial affect, as well as abnormalities in monitoring and evaluative functions of response inhibition.
Resumo:
As a more complete picture of the clinical phenotype of Parkinson's disease emerges, non-motor symptoms have become increasingly studied. Prominent among these non-motor phenomena are mood disturbance, cognitive decline and dementia, sleep disorders, hyposmia and autonomic failure. In addition, visual symptoms are common, ranging from complaints of dry eyes and reading difficulties, through to perceptual disturbances (feelings of presence and passage) and complex visual hallucinations. Such visual symptoms are a considerable cause of morbidity in Parkinson's disease and, with respect to visual hallucinations, are an important predictor of cognitive decline as well as institutional care and mortality. Evidence exists of visual dysfunction at several levels of the visual pathway in Parkinson's disease. This includes psychophysical, electrophysiological and morphological evidence of disruption of retinal structure and function, in addition to disorders of ‘higher’ (cortical) visual processing. In this review, we will draw together work from animal and human studies in an attempt to provide an insight into how Parkinson's disease affects the retina and how these changes might contribute to the visual symptoms experienced by patients.