995 resultados para High voltages.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of aluminosilicate (Al2SiO5) on the upturn characteristics of ZnO varistor ceramics has been investigated. Addition of Al2SiO5 shifts the point of upturn above 10(4) A cm(-2). The extended nonlinearity in the high current density region is better correlatable to the presence of higher density of trap stales and changing pattern of trap depths at the grain boundary interface as much as the grain interior conductivity. Microstructure studies show the formation and involvement of a liquid phase during sintering. The secondary phases, predominantly are antimony spinel, Zn7Sb2O12, zinc silicate, Zn2SiO4 and magnesium aluminium silicate. MgAl2Si3O10. Energy dispersive X-ray analyses (EDAX) show that Al and Si are distributed more in the grain boundaries and within the secondary phases than in the grain interiors. Capacitance-voltage analyses and dielectric dispersion studies indicate the presence of negative capacitance and associated resonance, indicative of the oscillatory charge redistribution involving increased trapping at the interface states. The admittance spectroscopy data show that the type of trap slates remains unaltered whereas the addition of Al2SiO5 increases the density of low energy traps. (C) 1997 Published by Elsevier Science S.A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Load commutated inverter (LCI)-fed wound field synchronous motor drives are used for medium-voltage high-power drive applications. This drive suffers from drawbacks such as complex starting procedure, sixth harmonic torque pulsations, quasi square wave motor current, notches in the terminal voltages, etc. In this paper, a hybrid converter circuit, consisting of an LCI and a voltage source inverter (VSI), is proposed, which can be a universal high-power converter solution for wound field synchronous motor drives. The proposed circuit, with the addition of a current-controlled VSI, overcomes nearly all of the shortcomings present in the conventional LCI-based system besides providing many additional advantages. In the proposed drive, the motor voltage and current are always sinusoidal even with the LCI switching at the fundamental frequency. The performance of the drive is demonstrated with detailed experimental waveforms from a 15.8-hp salient pole wound field synchronous machine. Finally, a brief description of the control scheme used for the proposed circuit is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A preliminary attempt has been made to study the time domain characteristics of the induced voltage and current on the rocket and its exhaust plume (ionized trail) when it is coupled with the transient electromagnetic field generated by a nearby lightning discharge. For the computation, finite difference time domain (FDTD) technique has been used where the object is assumed to be a finite vertical nonuniform transmission line above a perfectly conducting ground. It is seen that the amplitude of the first peak of the induced voltage and current at the mid point of the object is 23.5 kV and 4.9 kA respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent years, there has been a trend to run metallic pipelines carrying petroleum products and high voltage AC power lines parallel to each other in a relatively narrow strip of land. Due to this sharing of the right-of-way, verhead AC power line electric field may induce voltages on the metallic pipelines running in close vicinity leading to serious adverse effects. In this paper, the induced voltages on metallic pipelines running in close vicinity of high voltage power transmission lines have been computed. Before computing the induced voltages, an optimum configuration of the phase conductors based on the lowest conductor surface gradient and field under transmission line has been arrived at. This paper reports the conductor surface field gradients calculated for the various configurations. Also the electric fields under transmission line, for single circuit and double circuit (various phase arrangements) have been analyzed. Based on the above results, an optimum configuration giving the lowest field under the power line as well as the lowest conductor surface gradient has been arrived at and for this configuration, induced voltage on the pipeline has been computed using the Charge Simulation Method (CSM). For comparison, induced voltages on the pipeline has been computed for the various other phase configurations also.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Till date load-commutated inverter (LCI)-fed synchronous motor drive configuration is popular in high power applications (>10 MW). The leading power factor operation of synchronous motor by excitation control offers this simple and rugged drive structure. On the contrary, LCI-fed induction motor drive is absent as it always draws lagging power factor current. Therefore, complicated commutation circuit is required to switch off thyristors for a current source inverter (CSI)-driven induction motor. It poses the major hindrance to scale up the power rating of CSI-fed induction motor drive. Anew power topology for LCI-fed induction motor drive for medium-voltage drive application is proposed. A new induction machine (active-reactive induction machine) with two sets of three-phase winding is introduced as a drive motor. The proposed power configuration ensures sinusoidal voltage and current at the motor terminals. The total drive power is shared among a thyristor-based LCI, an insulated gate bipolar transistor (IGBT)-based two-level voltage source inverter (VSI), and a three-level VSI. The benefits of SCRs and IGBTs are explored in the proposed drive. Experimental results from a prototype drive verify the basic concepts of the drive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been suggested for the measurement of prebreakdown currents under a.c. conditions. Measurements were made using hemispherical stainless steel electrodes and currents from 10~3 A down to 10~7 A have been measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gate driver is an integral part of every power converter, drives the power semiconductor devices and also provides protection for the switches against short-circuit events and over-voltages during shut down. Gate drive card for IGBTs and MOSFETs with basic features can be designed easily by making use of discrete electronic components. Gate driver ICs provides attractive features in a single package, which improves reliability and reduces effort of design engineers. Either case needs one or more isolated power supplies to drive each power semiconductor devices and provide isolation to the control circuitry from the power circuit. The primary emphasis is then to provide simplified and compact isolated power supplies to the gate drive card with the requisite isolation strength and which consumes less space, and for providing thermal protection to the power semiconductor modules for 3-� 3 wire or 4 wire inverters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to improve the tracking and erosion performance of outdoor polymeric silicone rubber (SR) insulators used in HV power transmission lines, micron sized inorganic fillers are usually added to the base SR matrix. In addition, insulators used in high voltage dc transmission lines are designed to have increased creepage distance to mitigate the tracking and erosion problems. ASTM D2303 standard gives a procedure for finding the tracking and erosion resistance of outdoor polymeric insulator weathershed material samples under laboratory conditions for ac voltages. In this paper, inclined plane (IP) tracking and erosion tests similar to ASTM D2303 were conducted under both positive and negative dc voltages for silicone rubber samples filled with micron and nano sized particles to understand the phenomena occurring during such tests. Micron sized Alumina Trihydrate (ATH) and nano sized alumina fillers were added to silicone rubber matrix to improve the resistance to tracking and erosion. The leakage current during the tests and the eroded mass at the end of the tests were monitored. Scanning Electron Microscopy (SEM) and Energy dispersive Xray (EDX) studies were conducted to understand the filler dispersion and the changes in surface morphology in both nanocomposite and microcomposite samples. The results suggest that nanocomposites performed better than microcomposites even for a small filler loading (4%) for both positive and negative dc stresses. It was also seen that the tracking and erosion performance of silicone rubber is better under negative dc as compared to positive dc voltage. EDX studies showed migration of different ions onto the surface of the sample during the IP test under positive dc which has led to an inferior performance as compared to the performance under negative dc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a fast and accurate relaying technique for a long 765kv UHV transmission line based on support vector machine. For a long EHV/UHV transmission line with large distributed capacitance, a traditional distance relay which uses a lumped parameter model of the transmission line can cause malfunction of the relay. With a frequency of 1kHz, 1/4th cycle of instantaneous values of currents and voltages of all phases at the relying end are fed to Support Vector Machine(SVM). The SVM detects fault type accurately using 3 milliseconds of post-fault data and reduces the fault clearing time which improves the system stability and power transfer capability. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the Electromagnetic Transients Program(EMTP) developed by authors in which the distributed parameter line model is used. More than 15,000 different short circuit fault cases are simulated by varying fault location, fault impedance, fault incidence angle and fault type to train the SVM for high speed accurate relaying. Simulation studies have shown that the proposed relay provides fast and accurate protection irrespective of fault location, fault impedance, incidence time of fault and fault type. And also the proposed scheme can be used as augmentation for the existing relaying, particularly for Zone-2, Zone-3 protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optical-phonon-limited velocity model has been employed to investigate high-field transport in a selection of layered 2-D materials for both, low-power logic switches with scaled supply voltages, and high-power, high-frequency transistors. Drain currents, effective electron velocities, and intrinsic cutoff frequencies as a function of carrier density have been predicted, thus providing a benchmark for the optical-phonon-limited high-field performance limits of these materials. The optical-phonon-limited carrier velocities for a selection of multi-layers of transition metal dichalcogenides and black phosphorus are found to be modest compared to their n-channel silicon counterparts, questioning the utility of biasing these devices in the source-injection dominated regime. h-BN, at the other end of the spectrum, is shown to be a very promising material for high-frequency, high-power devices, subject to the experimental realization of high carrier densities, primarily due to its large optical-phonon energy. Experimentally extracted saturation velocities from few-layer MoS2 devices show reasonable qualitative and quantitative agreement with the predicted values. The temperature dependence of the measured v(sat) is discussed and compared with the theoretically predicted dependence over a range of temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multilevel inverters with dodecagonal (12-sided polygon) voltage space vector (SV) structures have advantages like extension of linear modulation range, elimination of fifth and seventh harmonics in phase voltages and currents for the full modulation range including extreme 12-step operation, reduced device voltage ratings, lesser dv/dt stresses on devices and motor phase windings resulting in lower EMI/EMC problems, and lower switching frequency-making it more suitable for high-power drive applications. This paper proposes a simple method to obtain pulsewidth modulation (PWM) timings for a dodecagonal voltage SV structure using only sampled reference voltages. In addition to this, a carrier-based method for obtaining the PWM timings for a general N-level dodecagonal structure is proposed in this paper for the first time. The algorithm outputs the triangle information and the PWM timing values which can be set as the compare values for any carrier-based hardware PWM module to obtain SV PWM like switching sequences. The proposed method eliminates the need for angle estimation, computation of modulation indices, and iterative search algorithms that are typical in multilevel dodecagonal SV systems. The proposed PWM scheme was implemented on a five-level dodecagonal SV structure. Exhaustive simulation and experimental results for steady-state and transient conditions are presented to validate the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches.

This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems.

Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired lattice constant. The film is grown strained on an available wafer substrate, but the thickness is below the dislocation nucleation threshold. By removing the film from the growth substrate, allowing the strain to relax elastically, and bonding it to a supportive handle, a template with the desired lattice constant is formed. Experimental efforts towards this structure and initial proof of concept are presented.

Cells with high radiative quality present the opportunity to recover a large amount of their radiative losses if they are incorporated in an ensemble that couples emission from one cell to another. This effect is well known, but has been explored previously in the context of sub cells that independently operate at their maximum power point. This analysis explicitly accounts for the system interaction and identifies ways to enhance overall performance by operating some cells in an ensemble at voltages that reduce the power converted in the individual cell. Series connected multijunctions, which by their nature facilitate strong optical coupling between sub-cells, are reoptimized with substantial performance benefit.

Photovoltaic efficiency is usually measured relative to a standard incident spectrum to allow comparison between systems. Deployed in the field systems may differ in energy production due to sensitivity to changes in the spectrum. The series connection constraint in particular causes system efficiency to decrease as the incident spectrum deviates from the standard spectral composition. This thesis performs a case study comparing performance of systems over a year at a particular location to identify the energy production penalty caused by series connection relative to independent electrical connection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While photovoltaics hold much promise as a sustainable electricity source, continued cost reduction is necessary to continue the current growth in deployment. A promising path to continuing to reduce total system cost is by increasing device efficiency. This thesis explores several silicon-based photovoltaic technologies with the potential to reach high power conversion efficiencies. Silicon microwire arrays, formed by joining millions of micron diameter wires together, were developed as a low cost, low efficiency solar technology. The feasibility of transitioning this to a high efficiency technology was explored. In order to achieve high efficiency, high quality silicon material must be used. Lifetimes and diffusion lengths in these wires were measured and the action of various surface passivation treatments studied. While long lifetimes were not achieved, strong inversion at the silicon / hydrofluoric acid interface was measured, which is important for understanding a common measurement used in solar materials characterization.

Cryogenic deep reactive ion etching was then explored as a method for fabricating high quality wires and improved lifetimes were measured. As another way to reach high efficiency, growth of silicon-germanium alloy wires was explored as a substrate for a III-V on Si tandem device. Patterned arrays of wires with up to 12% germanium incorporation were grown. This alloy is more closely lattice matched to GaP than silicon and allows for improvements in III-V integration on silicon.

Heterojunctions of silicon are another promising path towards achieving high efficiency devices. The GaP/Si heterointerface and properties of GaP grown on silicon were studied. Additionally, a substrate removal process was developed which allows the formation of high quality free standing GaP films and has wide applications in the field of optics.

Finally, the effect of defects at the interface of the amorphous silicon heterojuction cell was studied. Excellent voltages, and thus efficiencies, are achievable with this system, but the voltage is very sensitive to growth conditions. We directly measured lateral transport lengths at the heterointerface on the order of tens to hundreds of microns, which allows carriers to travel towards any defects that are present and recombine. This measurement adds to the understanding of these types of high efficiency devices and may aid in future device design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high voltage integrated circuit (HVIC) switch designed as a building block for power converters operating up to 13.56 MHz from off-line voltages is presented. A CMOS-compatible, 500 V power device process is used to integrate control circuitry with a high-speed MOS gate driver and high voltage lateral power MOSFET. Fabrication of the HVIC switches has proceeded in two stages. The first batch of devices showed switching times of less than 5 ns for the power switch and good high frequency performance of a level-shifter for driving half bridge converters. In the second phase, a switch that monolithically integrates all the elements required to form a complete high-frequency converter has been designed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large digital chips use a significant amount of energy to distribute a multi-GHz clock. By discharging the clock network to ground every cycle, the energy stored in this large capacitor is wasted. Instead, the energy can be recovered using an on-chip DC-DC converter. This paper investigates the integration of two DC-DC converter topologies, boost and buck-boost, with a high-speed clock driver. The high operating frequency significantly shrinks the required size of the L and C components so they can be placed on-chip; typical converters place them off-chip. The clock driver and DC-DC converter are able to share the entire tapered buffer chain, including the widest drive transistors in the final stage. To achieve voltage regulation, the clock duty cycle must be modulated; implying only single-edge-triggered flops should be used. However, this minor drawback is eclipsed by the benefits: by recovering energy from the clock, the output power can actually exceed the additional power needed to operate the converter circuitry, resulting in an effective efficiency greater than 100%. Furthermore, the converter output can be used to operate additional power-saving features like low-voltage islands or body bias voltages. ©2008 IEEE.