937 resultados para High strain


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Besides the elastic stiffness, the relaxation behavior of single living cells is also of interest of various researchers when studying cell mechanics. It is hypothesized that the relaxation response of the cells is governed by both intrinsic viscoelasticity of the solid phase and fluid-solid interactions mechanisms. There are a number of mechanical models have been developed to investigate the relaxation behavior of single cells. However, there is lack of model enable to accurately capture both of the mechanisms. Therefore, in this study, the porohyperelastic (PHE) model, which is an extension of the consolidation theory, combined with inverse Finite Element Analysis (FEA) technique was used at the first time to investigate the relaxation response of living chondrocytes. This model was also utilized to study the dependence of relaxation behavior of the cells on strain-rates. The stress-relaxation experiments under the various strain-rates were conducted with the Atomic Force Microscopy (AFM). The results have demonstrated that the PHE model could effectively capture the stress-relaxation behavior of the living chondrocytes, especially at intermediate to high strain-rates. Although this model gave some errors at lower strain-rates, its performance was acceptable. Therefore, the PHE model is properly a promising model for single cell mechanics studies. Moreover, it has been found that the hydraulic permeability of living chondrocytes reduced with decreasing of strain-rates. It might be due to the intracellular fluid volume fraction and the fluid pore pressure gradients of chondrocytes were higher when higher strain-rates applied.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Power dissipation maps have been generated in the temperature range of 900 degrees C to 1150 degrees C and strain rate range of 10(-3) to 10 s(-1) for a cast aluminide alloy Ti-24Al-20Nb using dynamic material model. The results define two distinct regimes of temperature and strain rate in which efficiency of power dissipation is maximum. The first region, centered around 975 degrees C/0.1 s(-1), is shown to correspond to dynamic recrystallization of the alpha(2) phase and the second, centered around 1150 degrees C/0.001 s(-1), corresponds to dynamic recovery and superplastic deformation of the beta phase. Thermal activation analysis using the power law creep equation yielded apparent activation energies of 854 and 627 kJ/mol for the first and second regimes, respectively. Reanalyzing the data by alternate methods yielded activation energies in the range of 170 to 220 kJ/mol and 220 to 270 kJ/mol for the first and second regimes, respectively. Cross slip was shown to constitute the activation barrier in both cases. Two distinct regimes of processing instability-one at high strain rates and the other at the low strain rates in the lower temperature regions-have been identified, within which shear bands are formed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present paper, the size and strain rate effects on ultra-thin < 100 >/{100} Cu nanowires at an initial temperature of 10 K have been discussed. Extensive molecular dynamics (MD) simulations have been performed using Embedded atom method (EAM) to investigate the structural behaviours and properties under high strain rate. Velocity-Verlet algorithm has been used to solve the equation of motions. Two different thermal loading cases have been considered: (i) Isothermal loading, in which Nose-Hoover thermostat is used to maintain the constant system temperature, and (ii) Adiabatic loading, i.e., without any thermostat. Five different wire cross-sections were considered ranging from 0.723 x 0.723 nm(2) to 2.169 x 2.169 nm(2) The strain rates used in the present study were 1 x 10(9) s(-1), 1 x 10(8) s(-1), and 1 x 10(7) s(-1). The effect of strain rate on the mechanical properties of copper nanowires was analysed, which shows that elastic properties are independent of thermal loading for a given strain rate and cross-sectional dimension of nanowire. It showed a decreasing yield stress and yield strain with decreasing strain rate for a given cross- section. Also, a decreasing yield stress and increasing yield strain were observed for a given strain rate with increasing cross-sectional area. Elastic modulus was found to be similar to 100 GPa, which was independent of processing temperature, strain rate, and size for a given initial temperature. Reorientation of < 100 >/{100} square cross-sectional copper nanowire into a series of stable ultra-thin Pentagon copper nanobridge structures with dia of similar to 1 nm at 10 K was observed under high strain rate tensile loading. The effect of isothermal and adiabatic loading on the formation of such pentagonal nanobridge structure has been discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The evolution of crystallographic texture in polycrystalline copper and nickel has been studied. The deformation texture evolution in these two materials over seven orders of magnitude of strain rate from 3 x 10(-4) to similar to 2.0 x 10(+3) s(-1) show little dependence on the stacking fault energy (SFE) and the amount of deformation. Higher strain rate deformation in nickel leads to weakerh < 101 > texture because of extensive microband formation and grain fragmentation. This behavior, in turn, causes less plastic spin and hence retards texture evolution. Copper maintains the stable end < 101 > component over large strain rates (from 3 x 10(-4) to 10(+2) s(-1)) because of its higher strain-hardening rate that resists formation of deformation heterogeneities. At higher strain rates of the order of 2 x 10(+3) s(-1), the adiabatic temperature rise assists in continuous dynamic recrystallization that leads to an increase in the volume fraction of the < 101 > component. Thus, strain-hardening behavior plays a significant role in the texture evolution of face-centered cubic materials. In addition, factors governing the onset of restoration mechanisms like purity and melting point govern texture evolution at high strain rates. SFE may play a secondary role by governing the propensity of cross slip that in turn helps in the activation of restoration processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An attempt to systematically investigate the effects of microstructural parameters in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels has been made for a high strength low alloy steel to observe in general, widely different trends in the dependence of both the total threshold stress intensity range, DELTA-K(th) and the intrinsic or effective threshold stress intensity range, DELTA-K(eff-th) on the prior austenitic grain size (PAGS). While a low strain hardening microstructure obtained by tempering at high temperatures exhibited strong dependence of DELTA-K(th) on the PAGS by virtue of strong interactions of crack tip slip with the grain boundary, a high strength, high strain hardening microstructure as a result of tempering at low temperature exhibited a weak dependence. The lack of a systematic variation of the near-threshold parameters with respect to grain size in temper embrittled structures appears to be related to the wide variations in the amount of intergranular fracture near threshold. Crack closure, to some extent provides a basis on which the increases in DELTA-K(th) at larger grain sizes can be rationalised. This study, in addition, provides a wide perspective on the relative roles of slip behaviour embrittlement and environment that result in the different trends observed in the grain size dependence of near-threshold fatigue parameters, based on which the inconsistency in the results reported in the literature can be clearly understood. Assessment of fracture modes through extensive fractography revealed that prior austenitic grain boundaries are effective barriers to cyclic crack growth compared to martensitic packet boundaries, especially at low stress intensities. Fracture morphologies comprising of low energy flat transgranular fracture can occur close to threshold depending on the combinations of strain hardening behaviour, yield strength and embrittlement effects. A detailed consideration is given to the discussion of cyclic stress strain behaviour, embrittlement and environmental effects and the implications of these phenomena on the crack growth behaviour near threshold.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stress relaxation testing is often utilised for determining whether athermal straining contributes to plastic flow; if plastic strain rate is continuous across the transition from tension to relaxation then plastic strain is fully thermally activated. This method was applied to an aged type 316 stainless steel tested in the temperature range 973–1123 K and to a high purity Al in the recrystallised annealed condition tested in the temperature range 274–417 K. The results indicated that plastic strain is thermally activated in these materials at these corresponding test temperatures. For Al, because of its high strain rate sensitivity, it was necessary to adopt a back extrapolation procedure to correct for the finite period that the crosshead requires to decelerate from the constant speed during tension to a dead stop for stress relaxation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tensile experiments at 673 K and grain sizes from similar to 8 to 17 mu m revealed large ductility at a low strain rate and a reduced ductility at a high strain rate, corresponding to a change from a high to a low value for the strain rate sensitivity. High strain rate deformation led to fracture by flow localization, whereas low strain rate deformation involved fracture by cavity nucleation and growth. Analysis revealed that grain boundary migration can assist significantly in reducing the stress concentrations caused by grain boundary sliding, thereby retarding cavity nucleation. Calculations demonstrate that the interlinkage of voids parallel and perpendicular to the tensile axis occurs significantly, so that it is not always possible to use the cavity shapes to distinguish between diffusion and plasticity controlled growth. Cavitation damage evolves slowly in materials with a coarser grain size because of reduced nucleation related to a reduction in the strain rate sensitivity and associated grain boundary sliding. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The evolution of microstructure and texture during room temperature compression of commercially pure Ti with four different initial orientations were studied under quasi-static and dynamic loading conditions. At a low strain rate (epsilon)over dot = 3 x 10(-4) s(-1) the different initial textures yielded the same end texture, despite different microstructural evolution in terms of twin boundaries. High strain rate deformation at (epsilon)over dot = 1.5 x 10(3) s(-1) was characterized by extensive twinning and evolution of a texture that was similar to that at low strain rate with minor differences. However, there was a significant difference in the strength of the texture for different orientations that was absent for low strain rate deformed samples at high strain rate. A viscoplastic self-consistent model with a secant approach was used to corroborate the experimental results by simulation. (C) 2011 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In an effort to study the role of strain rate response on the tribological behavior of metals, room temperature experiments were conducted by sliding commercially pure titanium and a-iron pins against an H-11 die steel flats of various surface textures. The steel flat surface textures were specifically prepared to allow for imposing varying amounts of strain rates at the contacting interface during sliding motion. In the experiments, it was observed that titanium (a harder material than iron) formed a transfer layer on H-11 steel surface textures that produced higher strain rates. In contrast, the titanium pins abraded the steel surfaces that produced lower strain rates. The iron pins were found to abrade the H-11 steel surface regardless of the surface texture characteristics. This unique tribological behavior of titanium is likely due to the fact that titanium undergoes adiabatic shear banding at high strain rates, which creates pathways for lower resistance shear planes. These shear planes lead to fracture and transfer layer formation on the surface of the steel flat, which ultimately promotes a higher strain rate of deformation at the asperity level. Iron does not undergo adiabatic shear banding and thus more naturally abrades the surfaces. Overall, the results clear indicated that a materials strain rate response can be an important factor in controlling the tribological behavior of a plastically deforming material at the asperity level. DOI: 10.1115/1.4007675]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel composite architecture consisting of a periodic arrangement of closely-spaced spheres of a stiff material embedded in a soft matrix is proposed for extremely high damping and shock absorption capacity. Efficacy of this architecture is demonstrated by compression loading a composite, where multiple steel balls were stacked upon each other in a polydimethylsiloxane (PDMS) matrix, at a low strain-rate of 0.05 s(-1) and a very high strain-rate of >2400 s(-1). The balls slide over each other upon loading, and revert to their original position when the load is removed. Because of imposition of additional strains into the matrix via this reversible, constrained movement of the balls, the composite absorbs significantly larger energy and endures much lesser permanent damage than the monolithic PDMS during both quasi-static and impact loadings. During the impact loading, energy absorbed per unit weight for the composite was, 8 times larger than the monolithic PDMS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The plastic deformation behavior and dynamic recrystallization (DRX) in homogenized AZ31 Mg alloy was investigated in uniaxial compression in the temperature range between 150 and 400 degrees C with strain rates ranging from 10(-3) to 10(2) s(-1). Twinning was found to contribute significantly during the early stages of deformation. The onset of twinning was examined in detail by recourse to the examination of the appearance of first local maxima before peak strain in the stress-strain responses and the second derivative of stress with strain. High strain hardening rate was observed immediately after the onset of twinning and was found to increase with the Zener-Hollomon parameter. DRX was observed at temperatures above 250 degrees C whereas deformation at lower temperatures (< 250 degrees C) leads to extensive twinning at all the strain rates. At intermediate temperatures of 250-300 degrees C, plastic strains tend to localize near grain/twin boundaries, confining DRX only to these regions. Increase in the temperature promotes non-basal slip, which, in turn, leads to uniform deformation; DRX too becomes uniform. Deformation behavior in three different regimes of temperature is discussed. The dependence of critical stress for the onset of DRX and peak flow stress on temperature and strain rate are also described. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hot deformation behavior of Nb-1 wt.%Zr alloy was studied using uniaxial compression tests carried out in vacuum to a true strain of 0.6 in the temperature range of 900 to 1700 degrees C and the strain rate range of 3 x 10(-3) to 10 s(-1). The optimum regime of hot workability of Nb-1Zr alloy was determined from the strain rate sensitivity (m) contour plots. A high m of about 02 was obtained in the temperature and strain rate range of 1200-1500 degrees C and 10(-3) to 10(-1) s(-1) and 1600-1700 degrees C and 10(-1) to 1 s(-1). Microstructure of the deformed samples showed features of dynamic recrystallization within the high strain rate sensitivity domain. Compared to the study on Nb-1Zr-0.1C alloy, Nb-1Zr showed a lower flow stress and an optimum hot working domain at lower temperatures. In the 1500 to 1700 degrees C range the apparent activation energy of deformation for Nb-1Zr was 259 kJ mol(-1), the stress exponent 5, and the activation volume about 200 to 700 b(3). (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Strength at extreme pressures (>1 Mbar or 100 GPa) and high strain rates (106-108 s-1) of materials is not well characterized. The goal of the research outlined in this thesis is to study the strength of tantalum (Ta) at these conditions. The Omega Laser in the Laboratory for Laser Energetics in Rochester, New York is used to create such extreme conditions. Targets are designed with ripples or waves on the surface, and these samples are subjected to high pressures using Omega’s high energy laser beams. In these experiments, the observational parameter is the Richtmyer-Meshkov (RM) instability in the form of ripple growth on single-mode ripples. The experimental platform used for these experiments is the “ride-along” laser compression recovery experiments, which provide a way to recover the specimens having been subjected to high pressures. Six different experiments are performed on the Omega laser using single-mode tantalum targets at different laser energies. The energy indicates the amount of laser energy that impinges the target. For each target, values for growth factor are obtained by comparing the profile of ripples before and after the experiment. With increasing energy, the growth factor increased.

Engineering simulations are used to interpret and correlate the measurements of growth factor to a measure of strength. In order to validate the engineering constitutive model for tantalum, a series of simulations are performed using the code Eureka, based on the Optimal Transportation Meshfree (OTM) method. Two different configurations are studied in the simulations: RM instabilities in single and multimode ripples. Six different simulations are performed for the single ripple configuration of the RM instability experiment, with drives corresponding to laser energies used in the experiments. Each successive simulation is performed at higher drive energy, and it is observed that with increasing energy, the growth factor increases. Overall, there is favorable agreement between the data from the simulations and the experiments. The peak growth factors from the simulations and the experiments are within 10% agreement. For the multimode simulations, the goal is to assist in the design of the laser driven experiments using the Omega laser. A series of three-mode and four-mode patterns are simulated at various energies and the resulting growth of the RM instability is computed. Based on the results of the simulations, a configuration is selected for the multimode experiments. These simulations also serve as validation for the constitutive model and the material parameters for tantalum that are used in the simulations.

By designing samples with initial perturbations in the form of single-mode and multimode ripples and subjecting these samples to high pressures, the Richtmyer-Meshkov instability is investigated in both laser compression experiments and simulations. By correlating the growth of these ripples to measures of strength, a better understanding of the strength of tantalum at high pressures is achieved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims: To examine whether job strain (ie, excessive demands combined with low control) is related to smoking cessation.

Methods: Prospective cohort study of 4928 Finnish employees who were baseline smokers. In addition to individual scores, coworker-assessed work unit level scores were calculated. A multilevel logistic regression analysis, with work units at the second level, was performed.

Results: At follow-up, 21% of baseline smokers had quit smoking. After adjustment for sex, age, employer and marital status, elevated odds ratios (ORs) for smoking cessation were found for the lowest vs the highest quartile of work unit level job strain (OR 1.43, 95% CI 1.17 to 1.75) and for the highest vs the lowest quartile of work unit level job control (OR 1.61, 95% CI 1.31 to 1.96). After additional adjustment for health behaviours and trait anxiety, similar results were observed. Further adjustment for socioeconomic position slightly attenuated these associations, but an additional adjustment for individual strain/control had little effect on the results. The association between job strain and smoking cessation was slightly stronger in light than in moderate/heavy smokers. The results for individual job strain and job control were in the same direction as the work unit models, although these relationships became insignificant after adjustment for socioeconomic position. Job demands were not associated with smoking cessation.

Conclusions: Smoking cessation may be less likely in workplaces with high strain and low control. Policies and programs addressing employee job strain and control might also contribute to the effectiveness of smoking cessation interventions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Unfavorable work characteristics, such as low job control and too high or too low job demands, have been suggested to increase the likelihood of physical inactivity during leisure time, but this has not been verified in large-scale studies. The authors combined individual-level data from 14 European cohort studies (baseline years from 19851988 to 20062008) to examine the association between unfavorable work characteristics and leisure-time physical inactivity in a total of 170,162 employees (50 women; mean age, 43.5 years). Of these employees, 56,735 were reexamined after 29 years. In cross-sectional analyses, the odds for physical inactivity were 26 higher (odds ratio 1.26, 95 confidence interval: 1.15, 1.38) for employees with high-strain jobs (low control/high demands) and 21 higher (odds ratio 1.21, 95 confidence interval: 1.11, 1.31) for those with passive jobs (low control/low demands) compared with employees in low-strain jobs (high control/low demands). In prospective analyses restricted to physically active participants, the odds of becoming physically inactive during follow-up were 21 and 20 higher for those with high-strain (odds ratio 1.21, 95 confidence interval: 1.11, 1.32) and passive (odds ratio 1.20, 95 confidence interval: 1.11, 1.30) jobs at baseline. These data suggest that unfavorable work characteristics may have a spillover effect on leisure-time physical activity.