994 resultados para High durability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold smoking method is one of the commonest ways for fish smoking. It is done by the smoke that is the result of burning hard and soft woods is smoking rooms. Smoke includes a number of chemical constructs and its main part is poly aromatic hydrocarbons. More than one hundred kinds of these constructs are recognized in smoke that is produced from saturated hydrocarbons resulted from the solution of the woods Ligno cellulose in high temperature and lack of oxygen conditions. The high poisoning potentials and carcinogenic features sixteen constructs among them are proved and observed on humans. In this research, the PAH compounds were identified and observed in a three month period after smoking and during storing among three types of smoked fishes Silver carp and Caspian sea Sefid and herring. They are the most produced and consumed smoked fish in Iran. To find the relationship between the concentrations of PAH constructs and the amount of lipid in fish, first, the amount of lipid were determined separately in the skin and flesh of 30 samples of each type. The method used was Bligh and Dyer (1959). PAH compounds derivation were made for all skin and flesh samples smoked fish using organic solvents with Soxeleh and the derived samples were injected to gas chromatography (GC) by Hamilton injectors for determining their components quality and their quantity. The height of the used column was 25 meters and its diameter was 0.32 mm with the silica filler, nitrogen gas as carrier and flame ionization detector (FID) that are special for these constructs. For data analysis, Statistical tests were used by computer soft ware identified that the difference in the amount of lipid within the flesh and skin of each species and also among each other is significant. The largest amount was in Herrings flesh and skin, 18.74% in skin and 14.47% in flesh. The least amount in the skin 4.19% and the flesh 3.10% of Sefid. The amount in Silver carp was 13.28%in skin and 8.16% in flesh. The examination of the PAH compounds in smoked fish showed that is carcinogenic compounds; exist in these in these fish with different quantities in each. It seems that its amount is directly related to the amount of their lipid. The amount is different in flesh and skin. One of the most important reasons is the direct content of smoke and the concentration of lipid in tissues of all three types. The maintenance of the smoked fish for three months showed that most of PAH compounds were solved and their density decreased. The changes in density within time in different in each type and in flesh and skin. The amount of their receiving in human through the consumption of the smoked fish depends on the resulted density, the way and the amount of consumption and now we can determine and execute standards for the maximum dosage per day and per month regarding effective factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural stone has been a popular and reliable building material throughout history appearing in many historic monuments and in more recent buildings. Research into the intrinsic properties of specific stones is important because it gives us a greater understanding of the factors that limit and act on them. This can help prevent serious problems from occurring in our buildings bringing both esthetic benefits and financial savings. To this end, the main objective of this research has been to study the influence of the fabric and the mineral composition of two types of sandstone on their durability. The first is a red continental sandstone from the Buntsandstein Age called “Molinaza Roja”, which is quarried in Montoro (Cordoba). The second is quarried in Ronda (Malaga) and is sold under the trade name of “Arenisca Ronda”. It is a light pink-whitish calcarenite deposited during the Late Tortonian to Late Messinian. We characterized their petrological and petrophysical properties by studying their rock fabrics, porous systems and mechanical properties. In order to obtain a complete vision of the behavior of their rock fabrics, we also carried out two decay tests, the salt crystallization and the freeze–thaw tests. We then measured the effects on the textures of the altered samples during and after the decay tests and we evaluated the changes in the porous system. By comparing the results between intact and altered samples, we found that Arenisca Ronda is less durable because it has a high quantity of expandable clays (smectites) and a high percentage of pores in the 0.1–1 μm range, in which the pressure produced by salt crystallization is strongest. In Molinaza Roja the decay agents caused significant sanding due to loss of cohesion between the clasts, especially during the salt crystallization test. In both stones, the anisotropies (oriented textures) have an important role in their hydric and dynamic behavior and also affect their mechanical properties (especially in the compression resistance). No changes in color were detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concrete substructures are often subjected to environmental deterioration, such as sulfate and acid attack, which leads to severe damage and causes structure degradation or even failure. In order to improve the durability of concrete, the High Performance Concrete (HPC) has become widely used by partially replacing cement with pozzolanic materials. However, HPC degradation mechanisms in sulfate and acidic environments are not completely understood. It is therefore important to evaluate the performance of the HPC in such conditions and predict concrete service life by establishing degradation models. This study began with a review of available environmental data in the State of Florida. A total of seven bridges have been inspected. Concrete cores were taken from these bridge piles and were subjected for microstructural analysis using Scanning Electron Microscope (SEM). Ettringite is found to be the products of sulfate attack in sulfate and acidic condition. In order to quantitatively analyze concrete deterioration level, an image processing program is designed using Matlab to obtain quantitative data. Crack percentage (Acrack/Asurface) is used to evaluate concrete deterioration. Thereafter, correlation analysis was performed to find the correlation between five related variables and concrete deterioration. Environmental sulfate concentration and bridge age were found to be positively correlated, while environmental pH level was found to be negatively correlated. Besides environmental conditions, concrete property factor was also included in the equation. It was derived from laboratory testing data. Experimental tests were carried out implementing accelerated expansion test under controlled environment. Specimens of eight different mix designs were prepared. The effect of pozzolanic replacement rate was taken into consideration in the empirical equation. And the empirical equation was validated with existing bridges. Results show that the proposed equations compared well with field test results with a maximum deviation of ± 20%. Two examples showing how to use the proposed equations are provided to guide the practical implementation. In conclusion, the proposed approach of relating microcracks to deterioration is a better method than existing diffusion and sorption models since sulfate attack cause cracking in concrete. Imaging technique provided in this study can also be used to quantitatively analyze concrete samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of mechanochemical activation upon the intercalation of formamide into a high-defect kaolinite has been studied using a combination of X-ray diffraction, thermal analysis, and DRIFT spectroscopy. X-ray diffraction shows that the intensity of the d(001) spacing decreases with grinding time and that the intercalated high-defect kaolinite expands to 10.2 A. The intensity of the peak of the expanded phase of the formamide-intercalated kaolinite decreases with grinding time. Thermal analysis reveals that the evolution temperature of the adsorbed formamide and loss of the inserting molecule increases with increased grinding time. The temperature of the dehydroxylation of the formamide-intercalated high-defect kaolinite decreases from 495 to 470oC with mechanochemical activation. Changes in the surface structure of the mechanochemically activated formamide-intercalated high-defect kaolinite were followed by DRIFT spectroscopy. Fundamentally the intensity of the high-defect kaolinite hydroxyl stretching bands decreases exponentially with grinding time and simultaneously the intensity of the bands attributed to the OH stretching vibrations of water increased. It is proposed that the mechanochemical activation of the high-defect kaolinite caused the conversion of the hydroxyls to water which coordinates the kaolinite surface. Significant changes in the infrared bands assigned to the hydroxyl deformation and amide stretching and bending modes were observed. The intensity decrease of these bands was exponentially related to the grinding time. The position of the amide C&unknown;O vibrational mode was found to be sensitive to grinding time. The effect of mechanochemical activation of the high-defect kaolinite reduces the capacity of the kaolinite to be intercalated with formamide.