907 resultados para Hierarchical outlook
Resumo:
Projections of U.S. ethanol production and its impacts on planted acreage, crop prices, livestock production and prices, trade, and retail food costs are presented under the assumption that current tax credits and trade policies are maintained. The projections were made using a multi-product, multi-country deterministic partial equilibrium model. The impacts of higher oil prices, a drought combined with an ethanol mandate, and removal of land from the Conservation Reserve Program (CRP) relative to baseline projections are also presented. The results indicate that expanded U.S. ethanol production will cause long-run crop prices to increase. In response to higher feed costs, livestock farmgate prices will increase enough to cover the feed cost increases. Retail meat, egg, and dairy prices will also increase. If oil prices are permanently $10-per-barrel higher than assumed in the baseline projections, U.S. ethanol will expand significantly. The magnitude of the expansion will depend on the future makeup of the U.S. automobile fleet. If sufficient demand for E-85 from flex-fuel vehicles is available, corn-based ethanol production is projected to increase to over 30 billion gallons per year with the higher oil prices. The direct effect of higher feed costs is that U.S. food prices would increase by a minimum of 1.1% over baseline levels. Results of a model of a 1988-type drought combined with a large mandate for continued ethanol production show sharply higher crop prices, a drop in livestock production, and higher food prices. Corn exports would drop significantly, and feed costs would rise. Wheat feed use would rise sharply. Taking additional land out of the CRP would lower crop prices in the short run. But because long-run corn prices are determined by ethanol prices and not by corn acreage, the long-run impacts on commodity prices and food prices of a smaller CRP are modest. Cellulosic ethanol from switchgrass and biodiesel from soybeans do not become economically viable in the Corn Belt under any of the scenarios. This is so because high energy costs that increase the prices of biodiesel and switchgrass ethanol also increase the price of cornbased ethanol. So long as producers can choose between soybeans for biodiesel, switchgrass for ethanol, and corn for ethanol, they will choose to grow corn. Cellulosic ethanol from corn stover does not enter into any scenario because of the high cost of collecting and transporting corn stover over the large distances required to supply a commercial-sized ethanol facility.
Resumo:
The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically, and serial sections were stained for parvalbumin, calretinin or calbindin. Each calcium-binding protein yielded a specific pattern of labelling, which differed between auditory areas. In AI, defined as area TC [see C. von Economo and L. Horn (1930) Z. Ges. Neurol. Psychiatr.,130, 678-757], parvalbumin labelling was dark in layer IV; several parvalbumin-positive multipolar neurons were distributed in layers III and IV. Calbindin yielded dark labelling in layers I-III and V; it revealed numerous multipolar and pyramidal neurons in layers II and III. Calretinin labelling was lighter than that of parvalbumin or calbindin in AI; calretinin-positive bipolar and bitufted neurons were present in supragranular layers. In non-primary auditory areas, the intensity of labelling tended to become progressively lighter while moving away from AI, with qualitative differences between the cytoarchitectonically defined areas. In analogy to non-human primates, our results suggest differences in intrinsic organization between auditory areas that are compatible with parallel and hierarchical processing of auditory information.
Resumo:
In this paper we address the issue of locating hierarchical facilities in the presence of congestion. Two hierarchical models are presented, where lower level servers attend requests first, and then, some of the served customers are referred to higher level servers. In the first model, the objective is to find the minimum number of servers and theirlocations that will cover a given region with a distance or time standard. The second model is cast as a Maximal Covering Location formulation. A heuristic procedure is then presented together with computational experience. Finally, some extensions of these models that address other types of spatial configurations are offered.
Resumo:
The package HIERFSTAT for the statistical software R, created by the R Development Core Team, allows the estimate of hierarchical F-statistics from a hierarchy with any numbers of levels. In addition, it allows testing the statistical significance of population differentiation for these different levels, using a generalized likelihood-ratio test. The package HIERFSTAT is available at http://www.unil.ch/popgen/softwares/hierfstat.htm.
Resumo:
Analysis of variance is commonly used in morphometry in order to ascertain differences in parameters between several populations. Failure to detect significant differences between populations (type II error) may be due to suboptimal sampling and lead to erroneous conclusions; the concept of statistical power allows one to avoid such failures by means of an adequate sampling. Several examples are given in the morphometry of the nervous system, showing the use of the power of a hierarchical analysis of variance test for the choice of appropriate sample and subsample sizes. In the first case chosen, neuronal densities in the human visual cortex, we find the number of observations to be of little effect. For dendritic spine densities in the visual cortex of mice and humans, the effect is somewhat larger. A substantial effect is shown in our last example, dendritic segmental lengths in monkey lateral geniculate nucleus. It is in the nature of the hierarchical model that sample size is always more important than subsample size. The relative weight to be attributed to subsample size thus depends on the relative magnitude of the between observations variance compared to the between individuals variance.
Resumo:
We have devised a program that allows computation of the power of F-test, and hence determination of appropriate sample and subsample sizes, in the context of the one-way hierarchical analysis of variance with fixed effects. The power at a fixed alternative is an increasing function of the sample size and of the subsample size. The program makes it easy to obtain the power of F-test for a range of values of sample and subsample sizes, and therefore the appropriate sizes based on a desired power. The program can be used for the 'ordinary' case of the one-way analysis of variance, as well as for hierarchical analysis of variance with two stages of sampling. Examples are given of the practical use of the program.
Resumo:
This paper reports on the purpose, design, methodology and target audience of E-learning courses in forensic interpretation offered by the authors since 2010, including practical experiences made throughout the implementation period of this project. This initiative was motivated by the fact that reporting results of forensic examinations in a logically correct and scientifically rigorous way is a daily challenge for any forensic practitioner. Indeed, interpretation of raw data and communication of findings in both written and oral statements are topics where knowledge and applied skills are needed. Although most forensic scientists hold educational records in traditional sciences, only few actually followed full courses that focussed on interpretation issues. Such courses should include foundational principles and methodology - including elements of forensic statistics - for the evaluation of forensic data in a way that is tailored to meet the needs of the criminal justice system. In order to help bridge this gap, the authors' initiative seeks to offer educational opportunities that allow practitioners to acquire knowledge and competence in the current approaches to the evaluation and interpretation of forensic findings. These cover, among other aspects, probabilistic reasoning (including Bayesian networks and other methods of forensic statistics, tools and software), case pre-assessment, skills in the oral and written communication of uncertainty, and the development of independence and self-confidence to solve practical inference problems. E-learning was chosen as a general format because it helps to form a trans-institutional online-community of practitioners from varying forensic disciplines and workfield experience such as reporting officers, (chief) scientists, forensic coordinators, but also lawyers who all can interact directly from their personal workplaces without consideration of distances, travel expenses or time schedules. In the authors' experience, the proposed learning initiative supports participants in developing their expertise and skills in forensic interpretation, but also offers an opportunity for the associated institutions and the forensic community to reinforce the development of a harmonized view with regard to interpretation across forensic disciplines, laboratories and judicial systems.
Resumo:
We present a simple model of communication in networks with hierarchical branching. We analyze the behavior of the model from the viewpoint of critical systems under different situations. For certain values of the parameters, a continuous phase transition between a sparse and a congested regime is observed and accurately described by an order parameter and the power spectra. At the critical point the behavior of the model is totally independent of the number of hierarchical levels. Also scaling properties are observed when the size of the system varies. The presence of noise in the communication is shown to break the transition. The analytical results are a useful guide to forecasting the main features of real networks.
Resumo:
A recent method used to optimize biased neural networks with low levels of activity is applied to a hierarchical model. As a consequence, the performance of the system is strongly enhanced. The steps to achieve optimization are analyzed in detail.
Resumo:
MOTIVATION: Analysis of millions of pyro-sequences is currently playing a crucial role in the advance of environmental microbiology. Taxonomy-independent, i.e. unsupervised, clustering of these sequences is essential for the definition of Operational Taxonomic Units. For this application, reproducibility and robustness should be the most sought after qualities, but have thus far largely been overlooked. RESULTS: More than 1 million hyper-variable internal transcribed spacer 1 (ITS1) sequences of fungal origin have been analyzed. The ITS1 sequences were first properly extracted from 454 reads using generalized profiles. Then, otupipe, cd-hit-454, ESPRIT-Tree and DBC454, a new algorithm presented here, were used to analyze the sequences. A numerical assay was developed to measure the reproducibility and robustness of these algorithms. DBC454 was the most robust, closely followed by ESPRIT-Tree. DBC454 features density-based hierarchical clustering, which complements the other methods by providing insights into the structure of the data. AVAILABILITY: An executable is freely available for non-commercial users at ftp://ftp.vital-it.ch/tools/dbc454. It is designed to run under MPI on a cluster of 64-bit Linux machines running Red Hat 4.x, or on a multi-core OSX system. CONTACT: dbc454@vital-it.ch or nicolas.guex@isb-sib.ch.
Resumo:
OBJECTIVE: Hierarchical modeling has been proposed as a solution to the multiple exposure problem. We estimate associations between metabolic syndrome and different components of antiretroviral therapy using both conventional and hierarchical models. STUDY DESIGN AND SETTING: We use discrete time survival analysis to estimate the association between metabolic syndrome and cumulative exposure to 16 antiretrovirals from four drug classes. We fit a hierarchical model where the drug class provides a prior model of the association between metabolic syndrome and exposure to each antiretroviral. RESULTS: One thousand two hundred and eighteen patients were followed for a median of 27 months, with 242 cases of metabolic syndrome (20%) at a rate of 7.5 cases per 100 patient years. Metabolic syndrome was more likely to develop in patients exposed to stavudine, but was less likely to develop in those exposed to atazanavir. The estimate for exposure to atazanavir increased from hazard ratio of 0.06 per 6 months' use in the conventional model to 0.37 in the hierarchical model (or from 0.57 to 0.81 when using spline-based covariate adjustment). CONCLUSION: These results are consistent with trials that show the disadvantage of stavudine and advantage of atazanavir relative to other drugs in their respective classes. The hierarchical model gave more plausible results than the equivalent conventional model.