966 resultados para Hierarchical Spatial Classification
Resumo:
G protein-coupled receptors (GPCRs) play important physiological roles transducing extracellular signals into intracellular responses. Approximately 50% of all marketed drugs target a GPCR. There remains considerable interest in effectively predicting the function of a GPCR from its primary sequence.
Resumo:
We address the important bioinformatics problem of predicting protein function from a protein's primary sequence. We consider the functional classification of G-Protein-Coupled Receptors (GPCRs), whose functions are specified in a class hierarchy. We tackle this task using a novel top-down hierarchical classification system where, for each node in the class hierarchy, the predictor attributes to be used in that node and the classifier to be applied to the selected attributes are chosen in a data-driven manner. Compared with a previous hierarchical classification system selecting classifiers only, our new system significantly reduced processing time without significantly sacrificing predictive accuracy.
Resumo:
MOTIVATION: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs. RESULTS: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases.
Resumo:
Biological experiments often produce enormous amount of data, which are usually analyzed by data clustering. Cluster analysis refers to statistical methods that are used to assign data with similar properties into several smaller, more meaningful groups. Two commonly used clustering techniques are introduced in the following section: principal component analysis (PCA) and hierarchical clustering. PCA calculates the variance between variables and groups them into a few uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical clustering is carried out by separating data into many clusters and merging similar clusters together. Here, we use an example of human leukocyte antigen (HLA) supertype classification to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering, respectively. However, the reader should bear in mind that the methods have been incorporated into other software as well, such as SIMCA, statistiXL, and R.
Biogeochemical Classification of South Florida’s Estuarine and Coastal Waters of Tropical Seagrasses
Resumo:
South Florida’s watersheds have endured a century of urban and agricultural development and disruption of their hydrology. Spatial characterization of South Florida’s estuarine and coastal waters is important to Everglades’ restoration programs. We applied Factor Analysis and Hierarchical Clustering of water quality data in tandem to characterize and spatially subdivide South Florida’s coastal and estuarine waters. Segmentation rendered forty-four biogeochemically distinct water bodies whose spatial distribution is closely linked to geomorphology, circulation, benthic community pattern, and to water management. This segmentation has been adopted with minor changes by federal and state environmental agencies to derive numeric nutrient criteria.
Resumo:
A mosaic of two WorldView-2 high resolution multispectral images (Acquisition dates: October 2010 and April 2012), in conjunction with field survey data, was used to create a habitat map of the Danajon Bank, Philippines (10°15'0'' N, 124°08'0'' E) using an object-based approach. To create the habitat map, we conducted benthic cover (seafloor) field surveys using two methods. Firstly, we undertook georeferenced point intercept transects (English et al., 1997). For ten sites we recorded habitat cover types at 1 m intervals on 10 m long transects (n= 2,070 points). Second, we conducted geo-referenced spot check surveys, by placing a viewing bucket in the water to estimate the percent cover benthic cover types (n = 2,357 points). Survey locations were chosen to cover a diverse and representative subset of habitats found in the Danajon Bank. The combination of methods was a compromise between the higher accuracy of point intercept transects and the larger sample area achievable through spot check surveys (Roelfsema and Phinn, 2008, doi:10.1117/12.804806). Object-based image analysis, using the field data as calibration data, was used to classify the image mosaic at each of the reef, geomorphic and benthic community levels. The benthic community level segregated the image into a total of 17 pure and mixed benthic classes.
Resumo:
Despite modern weed control practices, weeds continue to be a threat to agricultural production. Considering the variability of weeds, a classification methodology for the risk of infestation in agricultural zones using fuzzy logic is proposed. The inputs for the classification are attributes extracted from estimated maps for weed seed production and weed coverage using kriging and map analysis and from the percentage of surface infested by grass weeds, in order to account for the presence of weed species with a high rate of development and proliferation. The output for the classification predicts the risk of infestation of regions of the field for the next crop. The risk classification methodology described in this paper integrates analysis techniques which may help to reduce costs and improve weed control practices. Results for the risk classification of the infestation in a maize crop field are presented. To illustrate the effectiveness of the proposed system, the risk of infestation over the entire field is checked against the yield loss map estimated by kriging and also with the average yield loss estimated from a hyperbolic model.
Resumo:
This work shows the application of the analytic hierarchy process (AHP) in the full cost accounting (FCA) within the integrated resource planning (IRP) process. For this purpose, a pioneer case was developed and different energy solutions of supply and demand for a metropolitan airport (Congonhas) were considered [Moreira, E.M., 2005. Modelamento energetico para o desenvolvimento limpo de aeroporto metropolitano baseado na filosofia do PIR-O caso da metropole de Sao Paulo. Dissertacao de mestrado, GEPEA/USP]. These solutions were compared and analyzed utilizing the software solution ""Decision Lens"" that implements the AHP. The final part of this work has a classification of resources that can be considered to be the initial target as energy resources, thus facilitating the restraints of the IRP of the airport and setting parameters aiming at sustainable development. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Purpose Among environmental factors governing innumerous processes that are active in estuarine environments, those of edaphic character have received special attention in recent studies. With the objectives of determining the spatial patterns of soil attributes and components across different mangrove forest landscapes and obtaining additional information on the cause-effect relationships between these variables and position within the estuary, we analyzed several soil attributes in 31 mangrove soil profiles from the state of So Paulo (Guaruja, Brazil). Materials and methods Soil samples were collected at low tide along two transects within the CrumahA(0) mangrove forest. Samples were analyzed to determine pH, Eh, salinity, and the percentages of sand, silt, clay, total organic carbon (TOC), and total S. Mineralogy of the clay fraction (< 2 mm) was also studied by X-ray diffraction analysis, and partitioning of solid-phase Fe was performed by sequential extraction. Results and discussion The results obtained indicate important differences in soil composition at different depths and landscape positions, causing variations in physicochemical parameters, clay mineralogy, TOC contents, and iron geochemistry. The results also indicate that physicochemical conditions may vary in terms of different local microtopographies. Soil salinity was determined by relative position in relation to flood tide and transition areas with highlands. The proportions of TOC and total S are conditioned by the sedimentation of organic matter derived from vegetation and by the prevailing redox conditions, which clearly favored intense sulfate reduction in the soils (similar to 80% of the total Fe is Fe-pyrite). Particle-size distribution is conditioned by erosive/deposition processes (present and past) and probably by the positioning of ancient and reworked sandy ridges. The existing physicochemical conditions appear to contribute to the synthesis (smectite) and transformation (kaolinite) of clay minerals. Conclusions The results demonstrate that the position of soils in the estuary greatly affects soil attributes. Differences occur even at small scales (meters), indicating that both edaphic (soil classification, soil mineralogy, and soil genesis) and environmental (contamination and carbon stock) studies should take such variability into account.
Resumo:
Urbanization and the ability to manage for a sustainable future present numerous challenges for geographers and planners in metropolitan regions. Remotely sensed data are inherently suited to provide information on urban land cover characteristics, and their change over time, at various spatial and temporal scales. Data models for establishing the range of urban land cover types and their biophysical composition (vegetation, soil, and impervious surfaces) are integrated to provide a hierarchical approach to classifying land cover within urban environments. These data also provide an essential component for current simulation models of urban growth patterns, as both calibration and validation data. The first stages of the approach have been applied to examine urban growth between 1988 and 1995 for a rapidly developing area in southeast Queensland, Australia. Landsat Thematic Mapper image data provided accurate (83% adjusted overall accuracy) classification of broad land cover types and their change over time. The combination of commonly available remotely sensed data, image processing methods, and emerging urban growth models highlights an important application for current and next generation moderate spatial resolution image data in studies of urban environments.
Resumo:
The principle of using induction rules based on spatial environmental data to model a soil map has previously been demonstrated Whilst the general pattern of classes of large spatial extent and those with close association with geology were delineated small classes and the detailed spatial pattern of the map were less well rendered Here we examine several strategies to improve the quality of the soil map models generated by rule induction Terrain attributes that are better suited to landscape description at a resolution of 250 m are introduced as predictors of soil type A map sampling strategy is developed Classification error is reduced by using boosting rather than cross validation to improve the model Further the benefit of incorporating the local spatial context for each environmental variable into the rule induction is examined The best model was achieved by sampling in proportion to the spatial extent of the mapped classes boosting the decision trees and using spatial contextual information extracted from the environmental variables.
Resumo:
In this study we report the results of two experiments on visual attention conducted with patients with early-onset schizophrenia. These experiments investigated the effect of irrelevant spatial-scale information upon the processing of relevant spatial-scale information, and the ability to shift the spatial scale of attention, across consecutive trials, between different levels of the hierarchical stimulus. Twelve patients with early-onset schizophrenia and matched controls performed local-global tasks under: (1) directed attention conditions with a consistency manipulation and (2) divided-attention conditions. In the directed-attention paradigm, the early-onset patients exhibited the normal patterns of global advantage and interference, and were not unduly affected by the consistency manipulation. Under divided-attention conditions, however, the early-onset patients exhibited a local-processing deficit. The source of this local processing deficit lay in the prolonged reaction time to local targets, when these had been preceded by a global target, but not when preceded by a local target. These findings suggest an impaired ability to shift the spatial scale of attention from a global to a local spatial scale in early-onset schizophrenia. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The collection of spatial information to quantify changes to the state and condition of the environment is a fundamental component of conservation or sustainable utilization of tropical and subtropical forests, Age is an important structural attribute of old-growth forests influencing biological diversity in Australia eucalypt forests. Aerial photograph interpretation has traditionally been used for mapping the age and structure of forest stands. However this method is subjective and is not able to accurately capture fine to landscape scale variation necessary for ecological studies. Identification and mapping of fine to landscape scale vegetative structural attributes will allow the compilation of information associated with Montreal Process indicators lb and ld, which seek to determine linkages between age structure and the diversity and abundance of forest fauna populations. This project integrated measurements of structural attributes derived from a canopy-height elevation model with results from a geometrical-optical/spectral mixture analysis model to map forest age structure at a landscape scale. The availability of multiple-scale data allows the transfer of high-resolution attributes to landscape scale monitoring. Multispectral image data were obtained from a DMSV (Digital Multi-Spectral Video) sensor over St Mary's State Forest in Southeast Queensland, Australia. Local scene variance levels for different forest tapes calculated from the DMSV data were used to optimize the tree density and canopy size output in a geometric-optical model applied to a Landsat Thematic Mapper (TU) data set. Airborne laser scanner data obtained over the project area were used to calibrate a digital filter to extract tree heights from a digital elevation model that was derived from scanned colour stereopairs. The modelled estimates of tree height, crown size, and tree density were used to produce a decision-tree classification of forest successional stage at a landscape scale. The results obtained (72% accuracy), were limited in validation, but demonstrate potential for using the multi-scale methodology to provide spatial information for forestry policy objectives (ie., monitoring forest age structure).