51 resultados para Hidrogenacao catalitica
Resumo:
Il presente lavoro di tesi si inserisce in un progetto di ricerca volto alla sintesi di nuovi complessi di metalli di transizione per lo sviluppo di catalizzatori bifunzionali metallo-legante da impiegare in reazioni di catalisi omogenea, in particolare in reazioni redox quali idrogenazione e deidrogenazione attraverso il trasferimento di idrogeno. Il mio progetto ha riguardato la messa a punto della sintesi di complessi di Ru(0) che combinano leganti ciclopentadienonici e carbeni N-eterociclici e la sintesi dei corrispondenti complessi cationici per protonazione. Inoltre, è stato sintetizzato e caratterizzato un nuovo complesso cationico attraverso la metilazione del corrispettivo complesso neutro. I complessi sintetizzati sono stati utilizzati come precursori di catalizzatori nella riduzione tramite trasferimento di idrogeno del 4-fluoroacetofenone, valutandone l’attività catalitica in relazione a leganti, additivi e controioni. Allo scopo di delineare qualche ipotesi sul meccanismo di reazione sono stati effettuati diversi studi sulla reattività dei complessi impiegati in catalisi, in particolare usando la piridina come agente di “trapping”. Infine, è stato condotto uno studio preliminare dell’attività catalitica dei complessi sintetizzati nell’ossidazione di benzilalcol a benzaldeide. The present work is part of a research project that involves the study of new ruthenium-based transition metal complexes in order to develop new metal-ligand bifunctional catalysts to employ in homogeneous catalytic systems, in particular in redox reactions such as hydrogenation and dehydrogenation through hydrogen transfer. My project is focused on the optimization of the synthesis of Ru(0) complexes that combines different ligands as tetraphenylcyclopentadienone and N-heterocyclic carbenes and the synthesis of the corresponding cationic complexes by protonation. Furthermore, it is reported the synthesis and characterization of a new cationic complex obtained by methylation of the corresponding neutral complex. All the prepared complexes were employed as catalyst precursors in the transfer hydrogenation of 4-fluoroacetophenone and their performances were investigated in relation to the type of ligands, additives and counterions. The reactivity of these ruthenium complexes was also investigated with the aim of delineate some hypothesis on the reaction mechanism, in particular employing pyridine as a trapping agent. Finally, preliminary studies on the oxidation of benzyl alcohol have been carried out.
Resumo:
L’H2 è un vettore energetico di elevato interesse, utilizzato nell’industria chimica per la produzione di NH3 e CH3OH, oltre che per le reazioni di idrogenazione ed HDS. Un importante processo nella produzione di H2 è la reazione di Water Gas Shift (WGS), usata nel trattamento delle correnti uscenti dal reattore di Steam Reforming (SR) del metano: CO + H2O CO2 + H2 ∆H0298K = -41,2 KJ/mol. Sulla base di precedenti lavori, sono stati sviluppati nuovi catalizzatori per la reazione WGS ad alta temperatura (HTS), alternativi ai tradizionali sistemi a base di Fe/Cr, in considerazione dei vincoli economici (elevati valori del rapporto vapore/gas secco o S/DG) ed ambientali (formazione di CrVI) di questi sistemi. Partendo da sistemi Cu/Zn/Al con un basso contenuto di rame, ottenuti da precursori tipo idrotalcite (HT), stato studiato l’effetto dell’aggiunta di piccole quantità di alcuni promotori sull’attività e stabilità dei catalizzatori ottenuti, osservando un effetto positivo sulle caratteristiche fisiche, come l’aumento dell’area superficiale e della dispersione della fase attiva. I campioni contenenti i promotori erano inoltre caratterizzati da una maggiore stabilità termica e, in alcuni casi, da un’attività catalitica superiore a quella del catalizzatore di riferimento privo di promotori. L’aggiunta di piccole quantità di alcali alla formulazione con la migliore attività portava ad un ulteriore aumento di attività e di stabilità, attribuibile ad una minore formazione di coke sulla superficie. I sistemi più interessanti potevano operare anche a bassi valori del rapporto S/DG, interessanti dal punto di vista industriale. Lo studio dell’adsorbimento di CO mediante FT-IR ha permesso di ipotizzare la possibile natura della fase attiva nei sistemi. Infine, lo studio è stato esteso a sistemi per la reazione di WGS a media temperatura (MTS), osservando anche in questo caso un positivo effetto legato all’aggiunta di promotori, con un aumento dell’attività catalitica e della stabilità con il tempo di reazione.
Resumo:
La preparazione di catalizzatori attivi nella reazione di ossidazione parziale catalitica del metano a base di Rh, è stata condotta utilizzando tecniche di sintesi elettrochimiche su schiume metalliche a base di FeCrAlY. Sono stati depositati precursori a base di Rh/Al (Al2O3) e successivamente comparati ai catalizzatori a base idrotalcitica Rh/Mg/Al, precedentemente studiati. La precipitazione dei composti di Al ed idrotalciti sono stati ottenute tramite la tecnica di elettrogenerazione di basi. Sono state svolte prove di Linear Sweep Voltammetry (LSV) in soluzioni di KNO3 per determinare i potenziali ai quali si ottiene la riduzione dei nitrati, individuando il potenziale di sintesi a -1,2V. Tramite la tecnica potenziostatica (CronoAmperometria, CA) è stato possibile ottenere indicazioni sulle correnti in gioco durante la riduzione dei nitrati per tutto il tempo di reazione. Sono state eseguite successivamente cronoamperometrie in soluzione di Al(NO3)3 0,06M nelle condizioni -1,2V per tempi variabili, per poter determinare il grado di ricoprimento e l’adesione dei rivestimenti in ossoidrossido di alluminio su differenti supporti, partendo da geometrie semplici, come lamine metalliche in lega FeCrAlY, e passando mano a mano a geometrie più complesse, come fibre metalliche e schiume dello stesso materiale. La sintesi dei precursori catalitici è stata ottenuta su schiume di FeCrAlY in cronoamperometria utilizzando come specie in soluzione i nitrati dei metalli da depositare sottoforma di osso idrossidi. la sintesi viene effettuata successivamente su una cella in flusso più innovativa che da risultati migliori sia di ricoprimento che sulle percentuali di Rh depositato. Le schiume ottenute sono state successivamente caratterizzate, tramite analisi SEM-EDS, per poi essere calcinate a 900°C e provate, per determinarne l’attività nella reazione di ossidazione parziale catalitica del metano ad una temperatura di 750°C.
Resumo:
Introduction and motivation: A wide variety of organisms have developed in-ternal biomolecular clocks in order to adapt to cyclic changes of the environment. Clock operation involves genetic networks. These genetic networks have to be mod¬eled in order to understand the underlying mechanism of oscillations and to design new synthetic cellular clocks. This doctoral thesis has resulted in two contributions to the fields of genetic clocks and systems and synthetic biology, generally. The first contribution is a new genetic circuit model that exhibits an oscillatory behav¬ior through catalytic RNA molecules. The second and major contribution is a new genetic circuit model demonstrating that a repressor molecule acting on the positive feedback of a self-activating gene produces reliable oscillations. First contribution: A new model of a synthetic genetic oscillator based on a typical two-gene motif with one positive and one negative feedback loop is pre¬sented. The originality is that the repressor is a catalytic RNA molecule rather than a protein or a non-catalytic RNA molecule. This catalytic RNA is a ribozyme that acts post-transcriptionally by binding to and cleaving target mRNA molecules. This genetic clock involves just two genes, a mRNA and an activator protein, apart from the ribozyme. Parameter values that produce a circadian period in both determin¬istic and stochastic simulations have been chosen as an example of clock operation. The effects of the stochastic fluctuations are quantified by a period histogram and autocorrelation function. The conclusion is that catalytic RNA molecules can act as repressor proteins and simplify the design of genetic oscillators. Second and major contribution: It is demonstrated that a self-activating gene in conjunction with a simple negative interaction can easily produce robust matically validated. This model is comprised of two clearly distinct parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the oscillator dynamics are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this study is that a simple and usual negative interaction, such as degradation, se¬questration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. At the genetic level, this means that an explicit negative feedback loop is not necessary. Unlike many genetic oscillators, this model needs neither cooperative binding reactions nor the formation of protein multimers. Applications and future research directions: Recently, RNA molecules have been found to play many new catalytic roles. The first oscillatory genetic model proposed in this thesis uses ribozymes as repressor molecules. This could provide new synthetic biology design principles and a better understanding of cel¬lular clocks regulated by RNA molecules. The second genetic model proposed here involves only a repression acting on a self-activating gene and produces robust oscil¬lations. Unlike current two-gene oscillators, this model surprisingly does not require a second repressor gene. This result could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators. Possible follow-on research directions are: validate models in vivo and in vitro, research the potential of second model as a genetic memory, investigate new genetic oscillators regulated by non-coding RNAs and design a biosensor of positive feedbacks in genetic networks based on the operation of the second model Resumen Introduccion y motivacion: Una amplia variedad de organismos han desarro-llado relojes biomoleculares internos con el fin de adaptarse a los cambios ciclicos del entorno. El funcionamiento de estos relojes involucra redes geneticas. El mo delado de estas redes geneticas es esencial tanto para entender los mecanismos que producen las oscilaciones como para diseiiar nuevos circuitos sinteticos en celulas. Esta tesis doctoral ha dado lugar a dos contribuciones dentro de los campos de los circuitos geneticos en particular, y biologia de sistemas y sintetica en general. La primera contribucion es un nuevo modelo de circuito genetico que muestra un comportamiento oscilatorio usando moleculas de ARN cataliticas. La segunda y principal contribucion es un nuevo modelo de circuito genetico que demuestra que una molecula represora actuando sobre el lazo de un gen auto-activado produce oscilaciones robustas. Primera contribucion: Es un nuevo modelo de oscilador genetico sintetico basado en una tipica red genetica compuesta por dos genes con dos lazos de retroa-limentacion, uno positivo y otro negativo. La novedad de este modelo es que el represor es una molecula de ARN catalftica, en lugar de una protefna o una molecula de ARN no-catalitica. Este ARN catalitico es una ribozima que actua despues de la transcription genetica uniendose y cortando moleculas de ARN mensajero (ARNm). Este reloj genetico involucra solo dos genes, un ARNm y una proteina activadora, aparte de la ribozima. Como ejemplo de funcionamiento, se han escogido valores de los parametros que producen oscilaciones con periodo circadiano (24 horas) tanto en simulaciones deterministas como estocasticas. El efecto de las fluctuaciones es-tocasticas ha sido cuantificado mediante un histograma del periodo y la función de auto-correlacion. La conclusion es que las moleculas de ARN con propiedades cataliticas pueden jugar el misnio papel que las protemas represoras, y por lo tanto, simplificar el diseno de los osciladores geneticos. Segunda y principal contribucion: Es un nuevo modelo de oscilador genetico que demuestra que un gen auto-activado junto con una simple interaction negativa puede producir oscilaciones robustas. Este modelo ha sido estudiado y validado matematicamente. El modelo esta compuesto de dos partes bien diferenciadas. La primera parte es un lazo de retroalimentacion positiva creado por una proteina que se une al promotor de su propio gen activando la transcription. La segunda parte es una interaction negativa en la que una molecula represora evita la union de la proteina con el promotor. Un estudio estocastico muestra que el sistema es robusto al ruido. Un estudio determinista muestra que la dinamica del sistema es debida principalmente a dos tipos de biomoleculas: la proteina, y el complejo formado por el represor y esta proteina. La conclusion principal de este estudio es que una simple y usual interaction negativa, tal como una degradation, un secuestro o una inhibition, actuando sobre el lazo de retroalimentacion positiva de un solo gen es una condition suficiente para producir oscilaciones robustas. Un gen es suficiente y el lazo de retroalimentacion positiva no necesita activar a un segundo gen represor, tal y como ocurre en los relojes actuales con dos genes. Esto significa que a nivel genetico un lazo de retroalimentacion negativa no es necesario de forma explicita. Ademas, este modelo no necesita reacciones cooperativas ni la formation de multimeros proteicos, al contrario que en muchos osciladores geneticos. Aplicaciones y futuras lineas de investigacion: En los liltimos anos, se han descubierto muchas moleculas de ARN con capacidad catalitica. El primer modelo de oscilador genetico propuesto en esta tesis usa ribozimas como moleculas repre¬soras. Esto podria proporcionar nuevos principios de diseno en biologia sintetica y una mejor comprension de los relojes celulares regulados por moleculas de ARN. El segundo modelo de oscilador genetico propuesto aqui involucra solo una represion actuando sobre un gen auto-activado y produce oscilaciones robustas. Sorprendente-mente, un segundo gen represor no es necesario al contrario que en los bien conocidos osciladores con dos genes. Este resultado podria ayudar a clarificar los principios de diseno de los relojes celulares naturales y constituir una nueva y eficiente he-rramienta para crear osciladores geneticos sinteticos. Algunas de las futuras lineas de investigation abiertas tras esta tesis son: (1) la validation in vivo e in vitro de ambos modelos, (2) el estudio del potential del segundo modelo como circuito base para la construction de una memoria genetica, (3) el estudio de nuevos osciladores geneticos regulados por ARN no codificante y, por ultimo, (4) el rediseno del se¬gundo modelo de oscilador genetico para su uso como biosensor capaz de detectar genes auto-activados en redes geneticas.
Resumo:
This PhD work deals with problems of synthetic organic chemistry with particular attention to the development of environmentally friendly processes. In particular, new synthetic strategies have been studied based on the use of low cost heterogeneous catalysts, non-toxic reagents and mild operating conditions that do not involve, when possible, the use of solvents. The catalysts examined are both basic and acids, commercial or prepared by hetereogenization of homogeneous catalysts synthesized by tethering or impregnation. In particular it will be discussed the catalytic activity of oxides (Al2O3 and TiO2), supported sulphonic acids and hydrotalcites for the reactions of selective monoesterificazion of dicarboxylic acids, dehydrogenation of butane in gas phase, esterification of levulinic acid, Friedel-Craft acylations, C-C and C-P coupling. The use of these materials has allowed the development of simple processes with low environmental impact. The operating conditions are in fact mild and reaction times short. The selectivity for the desired products is in all reported cases very high and the catalysts can be recycled maintaining their optimum performances.
Resumo:
La messa a punto di processi in grado di utilizzare le biomasse lignocellulosiche per la produzione di molecole piattaforma, utilizzabili per la sintesi di intermedi per la chimica fine, l’industria polimerica ed i combustibili, è attualmente un argomento di ricerca di grande interesse. Tra le molecole più studiate vi è la furfurale (FU), che si può ottenere mediante disidratazione dei monosaccaridi pentosi contenuti nei materiali lignocellulosici. Il prodotto di riduzione della furfurale, l’alcol furfurilico (FAL), è commercialmente interessante perché trova applicazione nell’industria polimerica e viene utilizzato come intermedio nella produzione di lisina, vitamina C, lubrificanti e agenti dispersanti. In letteratura sono riportati numerosi processi che permettono di ottenere questo prodotto, utilizzando la riduzione catalitica con H2 in pressione, che però presentano problemi di selettività, costo, sostenibilità e tossicità del catalizzatore utilizzato. La possibilità di effettuare la riduzione selettiva della furfurale senza fare ricorso all’idrogeno molecolare, utilizzando un processo di H-transfer e catalizzatori eterogenei a base di ossidi misti, risulta quindi di estremo interesse perché permette di eliminare i suddetti problemi. Lo scopo di questa tesi è stato quello di ottimizzare il processo, confrontando catalizzatori basici, quali MgO, CaO e SrO ottenuti tramite calcinazione a diverse temperature dei rispettivi precursori. In particolare, è stata valutata l’influenza che la temperatura di calcinazione, il tempo e la temperatura di reazione hanno sulla reattività e la stabilità dei sistemi catalitici sintetizzati. La caratterizzazione dei catalizzatori tramite diffrazione ai raggi X (XRD), analisi termiche (TGA, DTA) e misure di area superficiale con tecnica BET ha permesso di correlare le proprietà chimico-fisiche dei materiali con la loro attività catalitica.