282 resultados para Herbivore


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, majorregulatory genes and the signals that modulate these defense metabolites are vastly understudied, especiallyin important agro-economic monocot species. Here we show that products and signals derived from a singleZea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbiv-ory. We provide genetic evidence that two 13-LOXs, ZmLOX10 and ZmLOX8, specialize in providing substratefor the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the spe-cialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indi-cating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression ofJA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10-derived signaling isrequired for LOX8-mediated JA. The possible role of GLVs in JA signaling is supported by their ability to par-tially restore wound-induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produceGLVs and JA led to dramatic reductions in herbivore-induced plant volatiles (HIPVs) and attractiveness toparasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic linkto the diurnal regulation of GLVs and HIPVs. GLV-, JA- and HIPV-deficient lox10 mutants display compro-mised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence thatLOX10-dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene toagro-ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbivore attack leads to resource conflicts between plant defensive strategies. Photoassimilates are required for defensive compounds and carbon storage below ground and may therefore be depleted or enriched in the roots of herbivore-defoliated plants. The potential role of belowground tissues as mediators of induced tolerance–defense trade-offs is unknown. We evaluated signaling and carbohydrate dynamics in the roots of Nicotiana attenuata following Manduca sexta attack. Experimental and natural genetic variability was exploited to link the observed metabolite patterns to plant tolerance and resistance. Leaf-herbivore attack decreased sugar and starch concentrations in the roots and reduced regrowth from the rootstock and flower production in the glasshouse and the field. Leaf-derived jasmonates were identified as major regulators of this root-mediated resource-based trade-off: lower jasmonate levels were associated with decreased defense, increased carbohydrate levels and improved regrowth from the rootstock. Application and transport inhibition experiments, in combination with silencing of the sucrose non-fermenting (SNF) -related kinase GAL83, indicated that auxins may act as additional signals that regulate regrowth patterns. In conclusion, our study shows that the ability to mobilize defenses has a hidden resource-based cost below ground that constrains defoliation tolerance. Jasmonate- and auxin-dependent mechanisms may lead to divergent defensive plant strategies against herbivores in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plant–herbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbivore-induced volatiles play an important role in the indirect defense of plants. After herbivore damage, volatiles are released from the plant and can attract herbivore enemies that protect the plant from additional damage. The herbivore-induced volatile blend is complex and usually consists of mono- and sesquiterpenes, aromatic compounds, and indole. Although these classes of compounds are generally produced at different times after herbivore damage, the release of the terpene (E)-β-caryophyllene and the aromatic ester methyl anthranilate appear to be tightly coordinated. We have studied the herbivore induction patterns of two terpene synthases from Zea mays L. (Poaceae), TPS23 and TPS10, as well as S-adenosyl-L-methionine:anthranilic acid carboxyl methyltransferases (AAMT1), which are critical for the production of terpenes and anthranilate compounds, respectively. The transcript levels of tps23 and aamt1 displayed the same kinetics after damage by the larvae of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), and showed the same organ-specific and haplotype-specific expression patterns. Despite its close functional relation to TPS23, the terpene synthase TPS10 is not expressed in roots and does not display the haplotype-specific expression pattern. The results indicate that the same JA-mediated signaling cascade maycontrol the production of both the terpene (E)-β-caryophyllene and aromatic ester methyl anthranilate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to herbivore attack, plants mobilize chemical defenses and release distinct bouquets of volatiles. Aboveground herbivores are known to use changes in leaf volatile patterns to make foraging decisions, but it remains unclear whether belowground herbivores also use volatiles to select suitable host plants. We therefore investigated how above- and belowground infestation affects the performance of the root feeder Diabrotica virgifera virgifera, and whether the larvae of this specialized beetle are able to use volatile cues to assess from a distance whether a potential host plant is already under herbivore attack. Diabrotica virgifera larvae showed stronger growth on roots previously attacked by conspecific larvae, but performed more poorly on roots of plants whose leaves had been attacked by larvae of the moth Spodoptera littoralis. Fittingly, D. virgifera larvae were attracted to plants that were infested with conspecifics, whereas they avoided plants that were attacked by S. littoralis. We identified (E)-β-caryophyllene, which is induced by D. virgifera, and ethylene, which is suppressed by S. littoralis, as two signals used by D. virgifera larvae to locate plants that are most suitable for their development. Our study demonstrates that soil-dwelling insects can use herbivore-induced changes in root volatile emissions to identify suitable host plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground plant-insect interactions, little is known about the prevalence and consequences of induced responses below-ground. 2.A recent study suggested that feeding by the specialist root herbivore Diabrotica virgifera virgifera makes maize roots more susceptible to conspecifics. To better understand this phenomenon, we conducted a series of experiments to study the behavioural responses and elucidate the underlying biochemical mechanisms. 3.We found that D. virgifera benefitted from feeding on a root system in groups of intermediate size (3–9 larvae/plant in the laboratory), whereas its performance was reduced in large groups (12 larvae/plant). Interestingly, the herbivore was able to select host plants with a suitable density of conspecifics by using the induced plant volatile (E)-β-caryophyllene in a dose-dependent manner. Using a split root experiment, we show that the plant-induced susceptibility is systemic and, therefore, plant mediated. Chemical analyses on plant resource reallocation and defences upon herbivory showed that the systemic induced-susceptibility is likely to stem from a combination of (i) increased free amino acid concentrations and (ii) relaxation of defence inducibility. 4.These findings show that herbivores can use induced plant volatiles in a density-dependent manner to aggregate on a host plant and change its metabolism to their own benefit. Our study furthermore helps to explain the remarkable ecological success of D. virgifera in maize fields around the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he most valuable organs of plants are often particularly rich in essential elements, but also very well defended. This creates a dilemma for herbivores that need to maximise energy intake while minimising intoxication. We investigated how the specialist root herbivore Diabrotica virgifera solves this conundrum when feeding on wild and cultivated maize plants. We found that crown roots of maize seedlings were vital for plant development and, in accordance, were rich in nutritious primary metabolites and contained higher amounts of the insecticidal 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and the phenolic compound chlorogenic acid. The generalist herbivores Diabrotica balteata and Spodoptera littoralis were deterred from feeding on crown roots, whereas the specialist D. virgifera preferred and grew best on these tissues. Using a 1,4-benzoxazin-3-one-deficient maize mutant, we found that D. virgifera is resistant to DIMBOA and other 1,4-benzoxazin-3-ones and that it even hijacks these compounds to optimally forage for nutritious roots

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical plant strengtheners find increasing use in agriculture to enhance resistance against pathogens. In an earlier study, it was found that treatment with one such resistance elicitor, BTH (benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester), increases the attractiveness of maize plants to a parasitic wasp. This surprising additional benefit of treating plants with BTH prompted us to conduct a series of olfactometer tests to find out if BTH and another commercially available plant strengthener, Laminarin, increase the attractiveness of maize to three important parasitic wasps, Cotesia marginventris, Campoletis sonorensis, and Microplitis rufiventris. In each case, plants that were sprayed with the plant strengtheners and subsequently induced to release volatiles by real or mimicked attack by Spodoptera littoralis caterpillars became more attractive to the parasitoids than water treated plants. The elicitors alone or in combination with plants that were not induced by herbivory were not attractive to the wasps. Interestingly, plants treated with the plant strengtheners did not show any consistent increase in volatile emissions. On the contrary, treated plants released less herbivore-induced volatiles, most notably indole, which has been reported to interfere with parasitoid attraction. The emission of the sesquiterpenes (E)-β-caryophyllene, β-bergamotene, and (E)-β-farnesene was similarly reduced by the treatment. Expression profiles of marker genes showed that BTH and Laminarin induced several pathogenesis related (PR) genes. The results support the notion that, as yet undetectable and unidentified compounds, are of major importance for parasitoid attraction, and that these attractants may be masked by some of the major compounds in the volatile blends. This study confirms that elicitors of pathogen resistance are compatible with the biological control of insect pests and may even help to improve it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to insect attack, plants release complex blends of volatile compounds. These volatiles serve as foraging cues for herbivores, predators and parasitoids, leading to plant-mediated interactions within and between trophic levels. Hence, plant volatiles may be important determinants of insect community composition. To test this, we created rice lines that are impaired in the emission of two major signals, S-linalool and (E)-β-caryophyllene. We found that inducible S-linalool attracted predators and parasitoids as well as chewing herbivores, but repelled the rice brown planthopper Nilaparvata lugens, a major pest. The constitutively produced (E)-β-caryophyllene on the other hand attracted both parasitoids and planthoppers, resulting in an increased herbivore load. Thus, silencing either signal resulted in specific insect assemblages in the field, highlighting the importance of plant volatiles in determining insect community structures. Moreover, the results imply that the manipulation of volatile emissions in crops has great potential for the control of pest populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate that single pairwise comparisons may lead to false conclusions regarding the effects of domestication on defensive and possibly other traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant invertases are sucrolytic enzymes that are essential for the regulation of carbohydrate metabolism and source–sink relationships. While their activity has been well documented during abiotic and biotic stresses, the role of proteinaceous invertase inhibitors in regulating these changes is unknown. Here, we identify a putative Nicotiana attenuata cell wall invertase inhibitor (NaCWII) which is strongly up-regulated in a jasmonate (JA)-dependent manner following simulated attack by the specialist herbivore Manduca sexta. To understand the role of NaCWII in planta, we silenced its expression by RNA interference and measured changes in primary and secondary metabolism and plant growth following simulated herbivory. NaCWII-silenced plants displayed a stronger depletion of carbohydrates and a reduced capacity to increase secondary metabolite pools relative to their empty vector control counterparts. This coincided with the attenuation of herbivore-induced CWI inhibition and growth suppression characteristic of wild-type plants. Together our findings suggest that NaCWII may act as a regulatory switch located downstream of JA accumulation which fine-tunes the plant's balance between growth and defense metabolism under herbivore attack. Although carbohydrates are not typically viewed as key factors in plant growth and defense, our study shows that interfering with their catabolism strongly influences plant responses to herbivory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolomics as the study of the entire set of metabolites of a given organism is an important frontier in life sciences. As a tool that captures the ‘front end’ of cellular machineries, metabolomics is particularly suited to investigate biotic interactions, including for instance the interplay between plants and insects. In this review, we discuss the opportunities and challenges of metabolomics to study plant–herbivore interactions. We first present a brief overview of the typical analytical workflows used in metabolomics and their associated issues, in particular those related to metabolome coverage and compound identification. Second, recent advances in the field of plant–herbivore relationships that are promoted by non-targeted approaches are reviewed, with examples ranging from classical herbivore resistance patterns to plant-mediated interactions across different spatial scales and volatile-mediated tritrophic interactions. Through general considerations and the discussion of a few selected case studies, our review highlights the potential and challenges of metabolomics as a research approach to understand biological interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants can tolerate leaf-herbivore attack through metabolic reconfigurations that allow for the rapid regrowth of lost leaves. Several studies indicate that root-attacked plants can re-allocate resources to the aboveground parts. However, the connection between tolerance and root regrowth remains poorly understood. We investigated the timing and extent of root regrowth of tolerant and susceptible lines of maize, Zea mays L. (Poaceae), attacked by the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), in the laboratory and the field. Infested tolerant maize plants produced more root biomass and even overcompensated for the lost roots, whereas this effect was absent in susceptible lines. Furthermore, the tolerant plants slowed growth of new roots in the greenhouse and in the field 4–8 days after infestation, whereas susceptible plants slowed growth of new roots only in the field and only after 12 days of infestation. The quick response of tolerant lines may have enabled them to escape root attack by starving the herbivores and by saving resources for regrowth after the attack had ceased. We conclude that both timing and the extent of regrowth may determine plant tolerance to root herbivory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene responsive factors (ERFs) are a large family of plant-specific transcription factors that are involved in the regulation of plant development and stress responses. However, little to nothing is known about their role in herbivore-induced defense. We discovered a nucleus-localized ERF gene in rice (Oryza sativa), OsERF3, that was rapidly up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis. Antisense and over-expression of OsERF3 revealed that it positively affects transcript levels of two mitogen-activated protein kinases (MAPKs) and two WRKY genes as well as concentrations of jasmonate (JA), salicylate (SA) and the activity of trypsin protease inhibitors (TrypPIs). OsERF3 was also found to mediate the resistance of rice to SSB. On the other hand, OsERF3 was slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens (Stål) and increased susceptibility to this piercing sucking insect, possibly by suppressing H2O2 biosynthesis. We propose that OsERF3 affects early components of herbivore-induced defense responses by suppressing MAPK repressors and modulating JA, SA, ethylene and H2O2 pathways as well as plant resistance. Our results also illustrate that OsERF3 acts as a central switch that gears the plant’s metabolism towards an appropriate response to chewing or piercing/sucking insects.