982 resultados para Hemodynamic changes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
PURPOSE:To evaluate the relationship between C reactive protein levels and clinical and radiological parameters with delayed ischemic neurological deficits and outcome after aneurysmal subarachnoid hemorrhage.METHODS:One hundred adult patients with aneurismal SAH were prospectively evaluated. Besides the baseline characteristics, daily C-reactive protein levels were prospectively measured until day 10 after subarachnoid hemorrhage. The primary end point was outcome assessed by Glasgow Outcome Scale, the secondary was the occurrence of delayed ischemic neurological deficits (DINDs).RESULTS:A progressive increase in the CRP levels from the admission to 3rd postictal day was observed, followed by a slow decrease until the 9th day. Hemodynamic changes in TCD were associated with higher serum CRP levels. Patients with lower GCS scores presented with increased CRP levels. Patients with higher Hunt and Hess grades on admission developed significantly higher CRP serum levels. Patients with higher admission Fisher grades showed increased levels of CRP. A statistically significant inverse correlation was established in our series between CRP serum levels and GOS on discharge and CRP levels.CONCLUSIONS:Higher C-reactive protein serum levels are associated with worse clinical outcome and the occurrence of delayed ischemic neurological deficits. Because C-reactive protein levels were significantly elevated in the early phase, they might be a useful parameter to monitor.
Resumo:
PURPOSE:To assess the hemodynamic changes and bispectral index (BIS) following administration of a continuous rate infusion (CRI) of butorphanol in isoflurane-anesthetized calves.METHODS: Eight calves weighing 110 ± 12 kg were included in the study. Anesthesia was induced with 5% isoflurane in O2 delivered via face mask and maintained with end-tidal concentration of 1.4%. IPPV was set to a peak inspiratory airway pressure of 15 cmH2O and respiratory rate of six breaths minute-1. Forty minutes after the start of anesthetic maintenance, 0.1 mg kg-1butorphanol was administered intravenously, followed by a CRI of 20 µg kg-1 minute-1. Hemodynamic variables and BIS were recorded before butorphanol administration (T0), and at 10, 20, 40 and 80 minutes following the CRI. Anesthesia was discontinued after the last recording and the calves were allowed to recover. The time to sternal recumbency (SRE) and standing (ST) were evaluated.RESULTS: There were no significant differences between the moments in all hemodynamic variables and BIS. The time to SRE and ST was 9 ± 5 and 14 ± 7 minutes, respectively.CONCLUSION: The continuous rate infusion did not produce clinically relevant changes in hemodynamic or bispectral index values compared to baseline in mechanically ventilated and unstimulated calves anesthetized at 1.4% isoflurane.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Enfermagem (mestrado profissional) - FMB
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aim: The interest of inflammatory marker increased in the last years, even in preventing clinical outcome after subarachnoid hemorrhage (SAH). Our objective was to study the relationships between C-reactive protein levels and clinical outcome and the development of cerebral vasospasm after aneurismal SAH. Methods: One hundred adult patients with aneurismal SAH were prospectively evaluated. Glasgow Coma Scale (GCS) score, Hunt and Hess grade, Fisher grade, CT scans, digital subtraction angiography studies, transcranial doppler (TCD) and daily neurological examinations were recorded. Serial serum CRP measurements were obtained on daily between admission and 10th days. Glasgow Outcome Scale (GOS) and the modified Rankin Scale (mRS) were used to predict outcome. Results: A progressive increase in the CRP levels from the admission to the 3rd postictal day was observed, followed by a slow decrease until the 9th day. Hemodynamic changes in TCD were associated with higher serum CRP levels. Patients with lower GCS scores presented with increased CRP levels. Patients with higher Hunt and Hess grades on admission developed significantly higher CRP serum levels. Patients with higher admission Fisher grades showed increased levels of CRP. A statistically significant inverse correlation was established in our series between CRP serum levels and GOS and mRS scores on discharge and CRP levels. Conclusion: Increased CRP levels were strongly associated with poor clinical outcome. CRP levels can predict cerebral vasospasm and delayed ischemic deficits with higher statistic significance. There are relationships between hemodynamic chances in TCD and higher CRP levels.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Previous studies have reported increased cerebral blood flow (CBF) velocity after decompressive craniectomy in traumatic brain injury (TBI) patients. A 27-year-old man presented with clinical and tomographic signs of cerebral herniation secondary to TBI. Prior to decompressive craniectomy, hemodynamic study by perfusion computed tomography (CT) indicated diffuse cerebral hyperperfusion. Following surgical decompression, the patient recovered neurologically and perfusion CT disclosed a decrease in the intensity of cerebral perfusion. The patient's blood pressure levels were similar at both pre- and postoperative perfusion CT examinations. This finding provides indirect evidence that decompressive craniectomy may improve mechanisms of CBF regulation in TBI, providing pathophysiological insights in the cerebral hemodynamics of TBI patients. This is the first report analyzing the hemodynamic changes through perfusion CT (PCT) in a patient with decompressive craniotomy due to TBI. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Since the first laparoscopic adrenalectomy, the technique has evolved and it has become the standard of care for many adrenal diseases, including pheochromocytoma. Two laparoscopic accesses to the adrenal have been developed: transperitoneal and retroperitoneal. Retroperitoneoscopic adrenalectomy may be recommended for the treatment of pheochromocytoma with the same peri-operative outcomes of the transperitoneal approach because it allows direct access to the adrenal glands without increasing the operative risks. Although technically more demanding than the transperitoneal approach, retroperitoneoscopy can shorten the mean operative time, which is critical for cases with pheochromocytoma where minimizing the potential for intra-operative hemodynamic changes is essential. Blood loss and the convalescence time can be also shortened by this approach. There is no absolute indication for either the transperitoneal or retroperitoneal approach; however, the latter procedure may be the best option for patients who have undergone previous abdominal surgery and obese patients. Also, retroperitoneoscopic adrenalectomy is a good alternative for treating cases with inherited pheochromocytomas, such as multiple endocrine neoplasia type 2A, in which the pheochromocytoma is highly prevalent and frequently occurs bilaterally.
Resumo:
This work is structured as follows: In Section 1 we discuss the clinical problem of heart failure. In particular, we present the phenomenon known as ventricular mechanical dyssynchrony: its impact on cardiac function, the therapy for its treatment and the methods for its quantification. Specifically, we describe the conductance catheter and its use for the measurement of dyssynchrony. At the end of the Section 1, we propose a new set of indexes to quantify the dyssynchrony that are studied and validated thereafter. In Section 2 we describe the studies carried out in this work: we report the experimental protocols, we present and discuss the results obtained. Finally, we report the overall conclusions drawn from this work and we try to envisage future works and possible clinical applications of our results. Ancillary studies that were carried out during this work mainly to investigate several aspects of cardiac resynchronization therapy (CRT) are mentioned in Appendix. -------- Ventricular mechanical dyssynchrony plays a regulating role already in normal physiology but is especially important in pathological conditions, such as hypertrophy, ischemia, infarction, or heart failure (Chapter 1,2.). Several prospective randomized controlled trials supported the clinical efficacy and safety of cardiac resynchronization therapy (CRT) in patients with moderate or severe heart failure and ventricular dyssynchrony. CRT resynchronizes ventricular contraction by simultaneous pacing of both left and right ventricle (biventricular pacing) (Chapter 1.). Currently, the conductance catheter method has been used extensively to assess global systolic and diastolic ventricular function and, more recently, the ability of this instrument to pick-up multiple segmental volume signals has been used to quantify mechanical ventricular dyssynchrony. Specifically, novel indexes based on volume signals acquired with the conductance catheter were introduced to quantify dyssynchrony (Chapter 3,4.). Present work was aimed to describe the characteristics of the conductancevolume signals, to investigate the performance of the indexes of ventricular dyssynchrony described in literature and to introduce and validate improved dyssynchrony indexes. Morevoer, using the conductance catheter method and the new indexes, the clinical problem of the ventricular pacing site optimization was addressed and the measurement protocol to adopt for hemodynamic tests on cardiac pacing was investigated. In accordance to the aims of the work, in addition to the classical time-domain parameters, a new set of indexes has been extracted, based on coherent averaging procedure and on spectral and cross-spectral analysis (Chapter 4.). Our analyses were carried out on patients with indications for electrophysiologic study or device implantation (Chapter 5.). For the first time, besides patients with heart failure, indexes of mechanical dyssynchrony based on conductance catheter were extracted and studied in a population of patients with preserved ventricular function, providing information on the normal range of such a kind of values. By performing a frequency domain analysis and by applying an optimized coherent averaging procedure (Chapter 6.a.), we were able to describe some characteristics of the conductance-volume signals (Chapter 6.b.). We unmasked the presence of considerable beat-to-beat variations in dyssynchrony that seemed more frequent in patients with ventricular dysfunction and to play a role in discriminating patients. These non-recurrent mechanical ventricular non-uniformities are probably the expression of the substantial beat-to-beat hemodynamic variations, often associated with heart failure and due to cardiopulmonary interaction and conduction disturbances. We investigated how the coherent averaging procedure may affect or refine the conductance based indexes; in addition, we proposed and tested a new set of indexes which quantify the non-periodic components of the volume signals. Using the new set of indexes we studied the acute effects of the CRT and the right ventricular pacing, in patients with heart failure and patients with preserved ventricular function. In the overall population we observed a correlation between the hemodynamic changes induced by the pacing and the indexes of dyssynchrony, and this may have practical implications for hemodynamic-guided device implantation. The optimal ventricular pacing site for patients with conventional indications for pacing remains controversial. The majority of them do not meet current clinical indications for CRT pacing. Thus, we carried out an analysis to compare the impact of several ventricular pacing sites on global and regional ventricular function and dyssynchrony (Chapter 6.c.). We observed that right ventricular pacing worsens cardiac function in patients with and without ventricular dysfunction unless the pacing site is optimized. CRT preserves left ventricular function in patients with normal ejection fraction and improves function in patients with poor ejection fraction despite no clinical indication for CRT. Moreover, the analysis of the results obtained using new indexes of regional dyssynchrony, suggests that pacing site may influence overall global ventricular function depending on its relative effects on regional function and synchrony. Another clinical problem that has been investigated in this work is the optimal right ventricular lead location for CRT (Chapter 6.d.). Similarly to the previous analysis, using novel parameters describing local synchrony and efficiency, we tested the hypothesis and we demonstrated that biventricular pacing with alternative right ventricular pacing sites produces acute improvement of ventricular systolic function and improves mechanical synchrony when compared to standard right ventricular pacing. Although no specific right ventricular location was shown to be superior during CRT, the right ventricular pacing site that produced the optimal acute hemodynamic response varied between patients. Acute hemodynamic effects of cardiac pacing are conventionally evaluated after stabilization episodes. The applied duration of stabilization periods in most cardiac pacing studies varied considerably. With an ad hoc protocol (Chapter 6.e.) and indexes of mechanical dyssynchrony derived by conductance catheter we demonstrated that the usage of stabilization periods during evaluation of cardiac pacing may mask early changes in systolic and diastolic intra-ventricular dyssynchrony. In fact, at the onset of ventricular pacing, the main dyssynchrony and ventricular performance changes occur within a 10s time span, initiated by the changes in ventricular mechanical dyssynchrony induced by aberrant conduction and followed by a partial or even complete recovery. It was already demonstrated in normal animals that ventricular mechanical dyssynchrony may act as a physiologic modulator of cardiac performance together with heart rate, contractile state, preload and afterload. The present observation, which shows the compensatory mechanism of mechanical dyssynchrony, suggests that ventricular dyssynchrony may be regarded as an intrinsic cardiac property, with baseline dyssynchrony at increased level in heart failure patients. To make available an independent system for cardiac output estimation, in order to confirm the results obtained with conductance volume method, we developed and validated a novel technique to apply the Modelflow method (a method that derives an aortic flow waveform from arterial pressure by simulation of a non-linear three-element aortic input impedance model, Wesseling et al. 1993) to the left ventricular pressure signal, instead of the arterial pressure used in the classical approach (Chapter 7.). The results confirmed that in patients without valve abnormalities, undergoing conductance catheter evaluations, the continuous monitoring of cardiac output using the intra-ventricular pressure signal is reliable. Thus, cardiac output can be monitored quantitatively and continuously with a simple and low-cost method. During this work, additional studies were carried out to investigate several areas of uncertainty of CRT. The results of these studies are briefly presented in Appendix: the long-term survival in patients treated with CRT in clinical practice, the effects of CRT in patients with mild symptoms of heart failure and in very old patients, the limited thoracotomy as a second choice alternative to transvenous implant for CRT delivery, the evolution and prognostic significance of diastolic filling pattern in CRT, the selection of candidates to CRT with echocardiographic criteria and the prediction of response to the therapy.