983 resultados para Helium Hamiltonian


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Beckman Helium Discharge Detector has been found to be sensitive to the fixed gases oxygen, nitrogen, and hydrogen at detection levels 10-100 times more sensitive than possible with a Bow-Mac Thermal Conductivity Detector. Detection levels o~ approximately 1.9 E-4 ~ v/v oxygen, 3.1 E-4 ~ v/v nitrogen, and 3.0 E-3 ~ v/v hydrogen are estimated. Response of the Helium Discharge Detector was not linear, but is useable for quantitation over limited ranges of concentration using suitably prepared working standards. Cleanliness of the detector discharge electrodes and purity of the helium carrier and discharge gas were found to be critical to the operation of the detector. Higher sensitivities of the Helium Discharge Detector may be possible by the design and installation of a sensitive, solid-state electrometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report time resolved study of C2 emission from laser produced carbon plasma in presence of ambient helium gas. The 1.06µm: radiation from a Nd:YAG laser was focused onto a graphite target where it·produced a transient plasma. We observed double peak structure in the time profile of C2 species. The twin peaks were observed only after a threshold laser fluence. It is proposed that the faster velocity component in the temporal profiles originates mainly due to recombination processes. The laser fluence and ambient gas dependence of the double peak intensity distribution is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenomenon of two-soliton resonances of the Kadomtsev-Petviashvilli equation for the superfluid surface density fluctuation in He films is studied. The velocity of the resonant soliton is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large amplitude local density fluctuations in a thin superfluid He film is considered. It is shown that these large amplitude fluctuations travel and behave like "quasi-solitons" under collision, even when the full nonlinearity arising from the Van der Waals potential is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a functional-integral approach, we have determined the temperature below which cavitation in liquid helium is driven by thermally assisted quantum tunneling. For both helium isotopes, we have obtained the crossover temperature in the whole range of allowed negative pressures. Our results are compatible with recent experimental results on 4He.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a complete calculation of the structure of liquid 4He confined to a concave nanoscopic wedge, as a function of the opening angle of the walls. This is achieved within a finite-range density functional formalism. The results here presented, restricted to alkali metal substrates, illustrate the change in meniscus shape from rather broad to narrow wedges on weak and strong alkali adsorbers, and we relate this change to the wetting behavior of helium on the corresponding planar substrate. As the wedge angle is varied, we find a sequence of stable states that, in the case of cesium, undergo one filling and one emptying transition at large and small openings, respectively. A computationally unambiguous criterion to determine the contact angle of 4He on cesium is also proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate adsorption of helium in nanoscopic polygonal pores at zero temperature using a finite-range density functional theory. The adsorption potential is computed by means of a technique denoted as the elementary source method. We analyze a rhombic pore with Cs walls, where we show the existence of multiple interfacial configurations at some linear densities, which correspond to metastable states. Shape transitions and hysterectic loops appear in patterns which are richer and more complex than in a cylindrical tube with the same transverse area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic coupling constant of selected cuprate superconductor parent compounds has been determined by means of embedded cluster model and periodic calculations carried out at the same level of theory. The agreement between both approaches validates the cluster model. This model is subsequently employed in state-of-the-art configuration interaction calculations aimed to obtain accurate values of the magnetic coupling constant and hopping integral for a series of superconducting cuprates. Likewise, a systematic study of the performance of different ab initio explicitly correlated wave function methods and of several density functional approaches is presented. The accurate determination of the parameters of the t-J Hamiltonian has several consequences. First, it suggests that the appearance of high-Tc superconductivity in existing monolayered cuprates occurs with J/t in the 0.20¿0.35 regime. Second, J/t=0.20 is predicted to be the threshold for the existence of superconductivity and, third, a simple and accurate relationship between the critical temperatures at optimum doping and these parameters is found. However, this quantitative electronic structure versus Tc relationship is only found when both J and t are obtained at the most accurate level of theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparision of the local effects of the basis set superposition error (BSSE) on the electron densities and energy components of three representative H-bonded complexes was carried out. The electron densities were obtained with Hartee-Fock and density functional theory versions of the chemical Hamiltonian approach (CHA) methodology. It was shown that the effects of the BSSE were common for all complexes studied. The electron density difference maps and the chemical energy component analysis (CECA) analysis confirmed that the local effects of the BSSE were different when diffuse functions were present in the calculations

Relevância:

20.00% 20.00%

Publicador: