988 resultados para Helium, Helium-3, ³He, Polarisator, hyperpolarisiert


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the helium-3 in oceanic sediments conies from interplanetary dust particles (IDPs), and can therefore be used to infer the accretion rate of dust to the Earth through time (Ozima et al., 1984, doi:10.1038/311448a0; Takayanagi and Ozima, 1987, doi:10.1029/JB092iB12p12531; Farley, 1995, doi:10.1038/376153a0). 3He records from slowly accumulating pelagic clays indicate that the accretion rate varies considerably over millions of years, probably owing to cometary and asteroidal break-up events3. Muller and MacDonald have proposed (Muller and MacDonald, 1995, doi:10.1038/377107b0) that periodic changes in this accretion rate due to a previously unrecognized 100-kyr periodicity in the Earth's orbital inclination might account for the prominence of this frequency in climate records of the past million years (Imbrie et al., 1993, doi:10.1029/93PA02751). Here we report variations in the 3He flux to the sea floor that support this idea. We find that the flux recorded in rapidly accumulating Quaternary sediments from the Mid-Atlantic Ridge oscillates with a period of about 100 kyr. We cannot yet say, however, whether the 100-kyr climate cycle is a consequence of, a cause of, or an effect independent of these periodic changes in the rate of delivery of interplanetary dust to the sea floor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A continuous age model for the brief climate excursion at the Paleocene-Eocene boundary has been constructed by assuming a constant flux of extraterrestrial 3He (3He[ET]) to the seafloor. 3He[ET] measurements from ODP Site 690 provide quantitative evidence for the rapid onset (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughout the history of the Solar System, Earth has been bombarded by interplanetary dust particles (IDPs), which are asteroid and comet fragments of diameter 1-1,000 µm. The IDP flux is believed to be in quasi-steady state: particles created by episodic main belt collisions or cometary fragmentation replace those removed by comminution, dynamical ejection, and planetary or solar impact. Because IDPs are rich in 3He, seafloor sediment 3He concentrations provide a unique means of probing the major events that have affected the IDP flux and its source bodies over geological timescales (Farley et al., 1998, doi:10.1126/science.280.5367.1250; Takayanagi and Ozima, 1987, doi:10.1029/JB092iB12p12531; Farley, 1995, doi:10.1038/376153a0; Kortenkamp and Dermott, 1998, doi:10.1126/science.280.5365.874). Here we report that collisional disruption of the >150-km-diameter asteroid that created the Veritas family 8.3 +/- 0.5 Myr ago (Nesvorny et al., 2003, doi:10.1086/374807) also produced a transient increase in the flux of interplanetary dust-derived 3He. The increase began at 8.2 +/- 0.1 Myr ago, reached a maximum of 4 times pre-event levels, and dissipated over 1.5 Myr. The terrestrial IDP accretion rate was overwhelmingly dominated by Veritas family fragments during the late Miocene. No other event of this magnitude over the past 10**8 yr has been deduced from main belt asteroid orbits. One remarkably similar event is present in the 3He record 35 Myr ago, but its origin by comet shower (Farley et al., 1998, doi:10.1126/science.280.5367.1250) or asteroid collision (Tagle and Claeys, 2004, doi:10.1126/science.1098481) remains uncertain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) is associated with abrupt climate change, carbon cycle perturbation, ocean acidification, as well as biogeographic shifts in marine and terrestrial biota that were largely reversed as the climatic transient waned. We report a clear exception to the behavior of the PETM as a reversing climatic transient in the eastern North Atlantic (Deep-Sea Drilling Project Site 401, Bay of Biscay) where the PETM initiates a greatly prolonged environmental change compared to other places on Earth where records exist. The observed environmental perturbation extended well past the d13C recovery phase and up to 650 kyr after the PETM onset according to our extraterrestrial 3He-based age-model. We observe a strong decoupling of planktic foraminiferal d18O and Mg/Ca values during the PETM d13C recovery phase, which in combination with results from helium isotopes and clay mineralogy, suggests that the PETM triggered a hydrologic change in western Europe that increased freshwater flux and the delivery of weathering products to the eastern North Atlantic. This state change persisted long after the carbon-cycle perturbation had stopped. We hypothesize that either long-lived continental drainage patterns were altered by enhanced hydrological cycling induced by the PETM, or alternatively that the climate system in the hinterland area of Site 401 was forced into a new climate state that was not easily reversed in the aftermath of the PETM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents characteristics of the Nd and Sr isotopic systems of ultrabasic rocks, gabbroids, plagiogranites, and their minerals as well as data on helium and hydrocarbons in fluid inclusions of the same samples. Materials presented in this publication were obtained by studying samples dredged from the MAR crest zone at 5°-6°N (U/Pb zircon dating, geochemical and petrological-mineralogical studies). It was demonstrated that variations in the isotopic composition of He entrapped in rocks and minerals were controlled by variable degrees of mixing of juvenile He, which is typical of basaltic glass for MAR (DM source), and atmospheric He. Increase in the atmospheric He fraction in plutonic rocks and, to a lesser degree, in their minerals reflects involvement of seawater or hydrated material of the oceanic crust in magmatic and postmagmatic processes. This conclusion finds further support in positive correlation between the fraction of mantle He (R ratio) and 87Sr/86Sr ratio. High-temperature hydration of ultrabasic rocks (amphibolization) was associated with increase in the fraction of mantle He, while their low-temperature hydration (serpentinization) was accompanied by drastic decrease in this fraction and significant increase in 87Sr/86Sr ratio. Insignificant variations in 143Nd/144Nd (close to 0.5130) and 87Sr/86Sr (0.7035) in most of gabbroids and plagiogranites as well as the fraction of mantle He in these rocks, amphibolites, and their ore minerals indicate that the melts were derived from the depleted mantle. Similar e-Nd values of gabbroids, plagiogranites, and fresh harzburgites (6.77-8.39) suggest that these rocks were genetically related to a single mantle source. e-Nd value of serpentinized lherzolites (2.62) likely reflects relations of these relatively weakly depleted mantle residues to another source. Aforementioned characteristics of the rocks generally reflect various degrees of mixing of depleted mantle components with crustal components (seawater) during metamorphic and hydrothermal processes that accompanied formation of the oceanic crust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have determined the helium abundance and isotopic composition of seafloor carbonate sediments from the flanks of the Ontong Java Plateau, western equatorial Pacific Ocean (ODP Site 806). These results provide a two million year record of the burial flux of extraterrestrial 3He, which we believe is a proxy for the terrestrial accretion rate of interplanetary dust particles. The 3He burial flux prior to ~700 ka was relatively low, ~0.5 pcc/cm**2/kyr, but from 700 ka to the present, the burial flux gradually increased to a value of ~1.0 pcc/cm**2/kyr. 100 kyr periodicity in the 3He burial flux is apparent over the last 700 kyr and correlates with the oxygen isotope record of global climate, with high 3He burial fluxes associated with interglacial periods. This periodicity and phase are consistent with previous 3He measurements in North Atlantic sediments. Although 100 kyr periodicity in 3He burial flux is in agreement with recent predictions of the accretion rate of interplanetary dust based on a model of the orbital evolution of asteroidal debris, the measurements and predictions differ by one half cycle in phase. Nevertheless, our observations suggest the terrestrial accretion rate of interplanetary dust is controlled by orbital eccentricity and/or inclination relative to the solar-system invariable plane. Such control is a necessary but not sufficient condition for the hypothesis of that variations in extraterrestrial dust accretion modulates terrestrial climate with a 100 kyr period. We also identify several brief (<25 kyr) intervals of strongly enhanced 3He burial, possibly related to random and transient fluctuations in the accretion rate of asteroidal or cometary dust particles.