945 resultados para Heating system


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examine the effect of energy efficiency incentives on household energy efficiency home improvements. Starting in February 2007, Italian homeowners have been able to avail themselves of tax credits on the purchase and installation costs of certain types of energy efficiency renovations. We examine two such renovations—door/window replacements and heating system replacements—using multi-year cross-section data from the Italian Consumer Expenditure Survey and focusing on a narrow period around the introduction of the tax credits. Our regressions control for dwelling and household characteristics and economy-wide factors likely to influence the replacement rates. The effects of the policy are different for the two types of renovations. With window replacements, the policy is generally associated with a 30 % or stronger increase in the renovation rates and number of renovations. In the simplest econometric models, the effect is not statistically significant, but the results get stronger when we allow for heterogeneous effects across the country. With heating system replacements, simpler models suggest that the tax credits policy had no effect whatsoever or that free riding was rampant, i.e., people are now accepting subsidies for replacements that they would have done anyway. Further examination suggests a strong degree of heterogeneity in the effects across warmer and colder parts of the country, and effects in the colder areas that are even more pronounced than those for window replacements. These results should, however, be interpreted with caution due to the low rates of renovations, which imply that the effects are estimated relatively imprecisely.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose
– Concern of the deterioration of indoor environmental quality as a result of energy efficient building design strategies is growing. Apprehensions of the effect of airtight, super insulated envelopes, the reduction of infiltration, and the reliance on mechanical systems to provide adequate ventilation (air supply) is promoting emerging new research in this field. The purpose of this paper is to present the results of an indoor air quality (IAQ) and thermal comfort investigation in UK energy efficient homes, through a case study investigation.

Design/methodology/approach
– The case study dwellings consisted of a row of six new-build homes which utilize mechanical ventilation with heat recovery (MVHR) systems, are built to an average airtightness of 2m3/m2/hr at 50 Pascal’s, and constructed without a central heating system. Physical IAQ measurements and occupant interviews were conducted during the summer and winter months over a 24-hour period, to gain information on occupant activities, perception of the interior environment, building-related health and building use.

Findings
– The results suggest inadequate IAQ and perceived thermal comfort, insufficient use of purge ventilation, presence of fungal growth, significant variances in heating patterns, occurrence of sick building syndrome symptoms and issues with the MVHR system.

Practical implications
– The findings will provide relevant data on the applicability of airtight, mechanically ventilated homes in a UK climate, with particular reference to IAQ.

Originality/value
– IAQ data of this nature is essentially lacking, particularly in the UK context. The findings will aid the development of effective sustainable design strategies that are appropriate to localized climatic conditions and sensitive to the health of building occupants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Meeting European emissions targets is reliant on innovative renewable technologies, particularly ‘renewable heat’ from heat pumps. Heat pump performance is driven by Carnot efficiency and optimum performance requires the lowest possible space heating flow temperatures leading to greater sensitivity to poor design, installation and operation. Does sufficient training and installer capacity exist for this technology? This paper situates the results of heat pump field trial performance in a socio-technical context, identifying how far installer competence requirements are met within the current vocational education and training (VET) system and considers possible futures. Few UK installers have formal heat pump qualifications at National Vocational Qualification (NVQ) level 3 and heat pump VET is generally through short-course provision where the structure of training is largely unregulated with no strict adherence to a common syllabus or a detailed training centre specification. Prerequisites for short-course trainees, specifically the demand for heating system knowledge based on metric design criteria, is limited and proof of ‘experience’ is an accepted alternative to formal educational qualifications. The lack of broader educational content and deficiencies in engineering knowledge will have profound negative impacts on both the performance and market acceptance of heat pumps. Possible futures to address this problem are identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, at both upstream and downstream of the production process, namely: i) Adoption of a new heating system for pultrusion die-tool in the manufacturing process, more effective and with minor heat losses; ii) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study addresses to the optimization of pultrusion manufacturing process from the energy-consumption point of view. The die heating system of external platen heaters commonly used in the pultrusion machines is one of the components that contribute the most to the high consumption of energy of pultrusion process. Hence, instead of the conventional multi-planar heaters, a new internal die heating system that leads to minor heat losses is proposed. The effect of the number and relative position of the embedded heaters along the die is also analysed towards the setting up of the optimum arrangement that minimizes both the energy rate and consumption. Simulation and optimization processes were greatly supported by Finite Element Analysis (FEA) and calibrated with basis on the temperature profile computed through thermography imaging techniques. The main outputs of this study allow to conclude that the use of embedded cylindrical resistances instead of external planar heaters leads to drastic reductions of both the power consumption and the warm-up periods of the die heating system. For the analysed die tool and process, savings on energy consumption up to 60% and warm-up period stages less than an half hour were attained with the new internal heating system. The improvements achieved allow reducing the power requirements on pultrusion process, and thus minimize industrial costs and contribute to a more sustainable pultrusion manufacturing industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent ecoefficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study the potential eco-efficiency performance of a pultrusion manufacturing company was assessed. Indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures in the production process of glass fibre reinforced polymers (GFRP) pultrusion profiles. Two different approaches were foreseen: 1)Adoption of a new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; and 2) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The World Business Council for Sustainable Development (WBCSD) defines Eco-Efficiency as follows: ‘Eco- Efficiency is achieved by the delivery of competitively priced-goods and services that satisfy human needs and bring quality of life, while progressively reducing ecological impacts and resource intensity throughout the life-cycle to a level at least in line with the earth’s estimated carrying capacity’. Eco-Efficiency is under this point of view a key concept for sustainable development, bringing together economic and ecological progress. Measuring the Eco-Efficiency of a company, factory or business, is a complex process that involves the measurement and control of several and relevant parameters or indicators, globally applied to all companies in general, or specific according to the nature and specificities of the business itself. In this study, an attempt was made in order to measure and evaluate the eco-efficiency of a pultruded composite processing company. For this purpose the recommendations of WBCSD [1] and the directives of ISO 14301 standard [2] were followed and applied. The analysis was restricted to the main business branch of the company: the production and sale of standard GFRP pultrusion profiles. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined according to ISO 14031 recommendations. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and ecoefficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; b) Implementation of new software for stock management (raw materials and final products) that minimize production failures and delivery delays to final consumer; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. In particular, the last approach seems to significantly improve the eco-efficient performance of the company. Currently, by-products and wastes generated in the manufacturing process of GFRP profiles are landfilled, with supplementary added costs to this company traduced by transport of scrap, landfill taxes and required test analysis to waste materials. However, mechanical recycling of GFRP waste materials, with reduction to powdered and fibrous particulates, constitutes a recycling process that can be easily attained on heavy-duty cutting mills. The posterior reuse of obtained recyclates, either into a close-looping process, as filler replacement of resin matrix of GFRP profiles, or as reinforcement of other composite materials produced by the company, will drive to both costs reduction in raw materials and landfill process, and minimization of waste landfill. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The global warming due to high CO2 emission in the last years has made energy saving a global problem nowadays. However, manufacturing processes such as pultrusion necessarily needs heat for curing the resin. Then, the only option available is to apply all efforts to make the process even more efficient. Different heating systems have been used on pultrusion, however, the most widely used are the planar resistances. The main objective of this study is to develop another heating system and compares it with the former one. Thermography was used in spite of define the temperature profile along the die. FEA (finite element analysis) allows to understand how many energy is spend with the initial heating system. After this first approach, changes were done on the die in order to test the new heating system and to check possible quality problems on the product. Thus, this work allows to conclude that with the new heating system a significant reduction in the setup time is now possible and an energy reduction of about 57% was achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manufacturing processes need permanently to innovate and optimize because any can be susceptible to continuous improvement. Innovation and commitment to the development of these new solutions resulting from existing expertise and the continuing need to increase productivity, flexibility and ensuring the necessary quality of the manufactured products. To increase flexibility, it is necessary to significantly reduce set-up times and lead time in order to ensure the delivery of products ever faster. This objective can be achieved through a normalization of the pultrusion line elements. Implicitly, there is an increase of productivity by this way. This work is intended to optimize the pultrusion process of structural profiles. We consider all elements of the system from the storehouse of the fibers (rack) to the pultrusion die. Particular attention was devoted to (a) the guidance system of the fibers and webs, (b) the resin container where the fibers are impregnated, (c) standard plates positioning of the fibers towards the entrance to the spinneret and also (d) reviewed the whole process of assembling and fixing the die as well as its the heating system. With the implementation of these new systems was achieved a significant saving of time set-up and were clearly reduced the unit costs of production. Quality assurance was also increased.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimize heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed with basis on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A presente dissertação tem como objetivo principal o estudo da importância que os sistemas de energias renováveis têm na obtenção da classe de eficiência energética em edifícios de habitação. Analisou-se assim, qual dos sistemas apresentados na legislação é mais vantajoso na relação entre a classe energética e o investimento necessário a efetuar. Como caso de estudo, utilizou-se um edifício de habitação em fase de projeto situada em ambiente urbano, a uma distância muito curta da costa marítima, no distrito do Porto. A primeira etapa da dissertação passou pela caracterização do edifício, determinando as suas necessidades nominais anuais de energia para aquecimento, para arrefecimento, para preparação de águas quentes sanitárias e por fim, as necessidades nominais de energia primária. Com isto, obteve-se a classe de eficiência energética da habitação sem a utilização de qualquer tipo de sistema de aproveitamento de energia renovável. Após esta obtenção, verificou-se que o edifício em análise já possuía uma classe muito eficiente, classe A, superior à classe mínima exigida pelo regulamento, B-. A desvantagem do edifício já possuir esta classe é que a implementação de sistemas de energia não iriam alterar drasticamente a classe, e por isso, não se iria conseguir retirar uma dedução correta de qual o melhor para promover a eficiência energética. De seguida, procedeu-se ao estudo dos sistemas de energia renovável, apresentando sistemas adequados para a habitação e calculando-se as novas classes de eficiência energética, com a utilização de cada sistema. Consecutivamente, começou-se a retirar ilações dos sistemas mais eficientes, ou seja, os sistemas que tem como função aquecer a moradia ou a função de preparar águas quentes sanitárias, pois, iriam mitigar necessidades nominais de energia, enquanto os sistemas de produção de energia elétrica apenas iriam contribuir para uma melhoria energética. Outra desvantagem verificada foi que, devido ao local onde a habitação se situa, não seria possível efetuar uma análise a todos os sistemas de aproveitamento de energia renovável. iv Por fim, efetuou-se uma análise dos investimentos necessários para a implementação dos sistemas de energias renováveis face às diminuições percentuais do rácio de eficiência energética. Posto isto, obteve-se os melhores sistemas a implementar na moradia, no ponto de vista de melhorar a classe de eficiência energética, seria uma caldeira a pellets com função de aquecimento e produção de águas quentes sanitárias, enquanto que, do ponto de vista financeiro obteve-se o sistema de aquecimento e produção de águas quentes sanitárias através de um recuperador de calor a lenha, que em ambos os casos a classe de eficiência energética passou de A para A+.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste projeto pretende-se utilizar uma fonte energética renovável (nomeadamente a biomassa), no âmbito da produção de água quente para aquecimento central das instalações do Instituto Superior de Engenharia do Porto (ISEP). O objetivo principal remete para a avaliação técnico-económica da substituição das quinze caldeiras existentes, alimentadas a gás natural, por seis caldeiras alimentadas a biomassa, nomeadamente a pellets. Desta forma, permite-se apostar na biomassa como uma alternativa para reduzir a dependência dos combustíveis fósseis. Neste trabalho apresenta-se uma comparação realista do sistema de aquecimento existente face ao novo a implementar, alimentado por um combustível renovável utilizando caldeiras a pellets de 85% de rendimento. Para realizar esta comparação, usou-se as faturas energéticas de gás natural do ISEP, o custo da quantidade equivalente necessária de pellets, os custos de manutenção dos dois tipos de caldeiras e, os custos do consumo de energia elétrica por parte de ambas as caldeiras. Com este estudo, estimou-se uma poupança anual de 84.100,76 €/ano. Determinaram-se experimentalmente, em laboratório, os parâmetros essenciais de uma amostra de pellets, que foram usados para calcular as necessidades energéticas em biomassa no ISEP, bem como a produção de cinzas gerada por parte das caldeiras. Foi proposto um destino ambientalmente adequado para os 788,5 kg/ano de cinzas obtidas – a utilização na compostagem, após tratamento e aprovação de ensaios ecotoxicológicos realizados pela empresa que fará a sua recolha. As caldeiras a pellets terão um consumo mínimo teórico de 16,47 kgpellets/h, consumindo previsivelmente 197,13 tpellets/ano. Para este efeito, serão usadas caldeiras Quioto de 150 kW da marca Zantia. Para comparar distintas possibilidades de investimento para o projeto, avaliaram-se dois cenários: um foi escolhido de forma a cobrir o somatório da potência instalada das caldeiras atuais e o outro de forma a responder aos consumos energéticos em aquecimento atuais. Além disso, avaliaram-se cenários de financiamento do investimento distintos: um dos cenários corresponde ao pagamento do investimento total do projeto no momento da aquisição das caldeiras, enquanto o outro cenário, mais provável de ser escolhido, refere-se ao pedido de um empréstimo ao banco, no valor de 75% do investimento total. Para o cenário mais provável de investimento, obteve-se um VAL de 291.364,93 €/ano, com taxa interna de rentabilidade (TIR) de 17 %, um índice de rentabilidade (IR) de 1,85 e um período de retorno (PBP) de 5 anos. Todos os cenários avaliados registam rentabilidade do projeto de investimento, sem risco para o projeto.