985 resultados para Heat storage


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A battery powered air-conditioning device was developed to provide an improved thermal comfort level for individuals in inadequately cooled environments. This device is a battery powered air-conditioning system with the phase change material (PCM) for heat storage. The condenser heat is stored in the PCM during the cooling operation and is discharged while the battery is charged by using the vapor compression cycle as a thermosiphon loop. The main focus of the current research was on the development of the cooling system. The cooling capacity of the vapor compression cycle measured was 165.6 W with system COP at 2.85. It was able to provide 2 hours cooling without discharging heat to the ambient. The PCM was recharged in nearly 8 hours under thermosiphon mode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente estudo teve como objetivo a caracterização de variações anátomo-fisiológicas que decorrem do processo de aclimatação sazonal em bovinos leiteiros com alto (Altas) e baixo (Baixas) potencial leiteiro, com vista a selecionar animais que conciliem bons desempenhos produtivos e índices de adaptabilidade que possibilitem a mudança de homeostase face às condições climáticas presentes no clima mediterrânico. O estudo foi realizado numa herdade comercial, situada no Alentejo, utilizando 13 vacas multíparas (6 Baixas e 7 Altas), durante três períodos: P1 (animais aclimatados ao verão; presença de stresse térmico); P2 (animais aclimatados ao verão; termoneutralidade); P3 (animais aclimatados ao inverno; termoneutralidade). Em stresse térmico (P1), verificaram-se maiores esforços termolíticos e maiores armazenamentos de calor no grupo das Altas. Observou-se também que a produção de leite das Altas foi afetada pelo stresse térmico, evidênciando uma redução 24-48h após os valores de temperatura retal mais elevados. Nesta situação, as Baixas apresentaram uma variação na produção oposta à das Altas. Em P1, os valores de proteína e de gordura no leite foram significativamente mais baixos que em P3, em ambos os grupos. A ureia no leite foi significativamente mais elevada nas Altas durante o P1, revelando potencial como biomarcador de stresse térmico. Do P1 para o P3 obser-vou-se uma redução gradual do hematócrito, da hemoglobina e da triiodotironina (T3). As Altas apresentaram uma maior redução de triiodotironina (T3) que as Baixas, como consequência de uma maior intensidade de aclimatação. Nos pelos não se registaram diferenças entre os períodos, o que contrasta com alguma bibliografia. Porém, a ausência da insolação direta poderá ter sido um fator determinante; ABSTRACT: The main objective of the present study was the characterization of anatomical and physiological variations that occur in the seasonal acclimatization process of dairy cows with high (Altas) and low (Baixas) milk yield potential. In this way it should be possible to do a selection of animals with good productive traits and also with adaptability indexes that allow a change in homeostasis to cope with the climatic conditions of the mediterranean climate. Meteorological, clinical, productive, physiological and anatomical data were collected. The study was conducted in an Alentejo's dairy farm, using 13 multiparous cows (6 with low milk yield and 7 with high milk yield), during three periods: P1 (animals acclimated to summer, in heat stress); P2 (animals acclimated to summer, thermoneutrality); P3 (animals acclimated to winter; thermoneutrality). In thermal stress (P1), the high milk yield group (Altas) shown greater thermolytic efforts and also higher heat storage. The milk yield in this group was also affected by heat stress, showing a decrease in production when the rectal temperature increased, with a delay of 24-42 hours. In this situation the Baixas group showed an opposite milk production variation. In P1, the protein and fat milk content was lower than in P3, in both groups. Milk urea levels were significantly higher during P1 in the Altas group, revealing potential as an heat stress biomarker. Hematocrit, hemoglobin and triiodothyronine (T3) values gradualy decreased from P1 to P3. T3 values were lower in Altas than in Baixas group, as a consequence of a more intense acclimatization. The hair analysis didn’t show the standard seasonal acclimatization process, indicating the absence of direct solar radiation as a determinant factor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of lake–atmosphere interactions was the main purpose of a 2014 summer experiment at Alqueva reservoir in Portugal. Near-surface fluxes of momentum, heat and mass [water vapour (H2O) and carbon dioxide (CO2)] were obtained with the new Campbell Scientific’s IRGASON Integrated Open-Path CO2/H2O Gas Analyser and 3D Sonic Anemometer between 2 June and 2 October. On average, the reservoir was releasing energy in the form of sensible and latent heat flux during the study period. At the end of the 75 d, the total evaporation was estimated as 490.26 mm. A high correlation was found between the latent heat flux and the wind speed (R = 0.97). The temperature gradient between air and water was positive between 12 and 21 UTC, causing a negative sensible heat flux, and negative during the rest of the day, triggering a positive sensible heat flux. The reservoir acted as a sink of atmospheric CO2 with an average rate of −0.026 mg m−2 s−1. However, at a daily scale we found an unexpected uptake between 0 and 9 UTC and almost null flux between 13 and 19 UTC. Potential reasons for this result are further discussed. The net radiation was recorded for the same period and water column heat storage was estimated using water temperature profiles. The energy balance closure for the analysed period was 81%. In-water solar spectral downwelling irradiance profiles were measured with a new device allowing measurements independent of the solar zenith angle, which enabled the computation of the attenuation coefficient of light in the water column. The average attenuation coefficient for the photosynthetically active radiation spectral region varied from 0.849 ± 0.025 m−1 on 30 July to 1.459 ± 0.007 m−1 on 25 September.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heat exchanger design plays a significant role in the performance of solid state hydrogen storage device. In the present study, a cylindrical hydrogen storage device with an embedded annular heat exchanger tube with radial circular copper fins, is considered. A 3-D mathematical model of the storage device is developed to investigate the sorption performance of metal hydride (MH). A prototype of the device is fabricated for 1 kg of MH alloy, LaNi5, and tested at constant supply pressure of hydrogen, validating the simulation results. Absorption characteristics of storage device have been examined by varying different operating parameters such as hydrogen supply pressure and cooling fluid temperature and velocity. Absorption process is completed in 18 min when these parameters are 15 bar, 298 K and 1 m/s respectively. A study of geometric parameters of copper fins (such as perforation, number and thickness of fin) has been carried out to investigate their effects on absorption process. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper studies the influence of hydraulics and control of thermal storage in systems combined with solar thermal and heat pump for the production of warm water and space heating in dwellings. A reference air source heat pump system with flat plate collectors connected to a combistore was defined and modeled together with the IEA SHC Task 44 / HPP Annex 38 (T44A38) “Solar and Heat Pump Systems” boundary conditions of Strasbourg climate and SFH45 building. Three and four pipe connections as well as use of internal and external heat exchangers for DHW preparation were investigated as well as sensor height for charging of the DHW zone in the store. The temperature in this zone was varied to ensure the same DHW comfort was achieved in all cases. The results show that the four pipe connection results in 9% improvement in SPF compared to three pipe and that the external heat exchanger for DHW preparation leads to a 2% improvement compared to the reference case. Additionally the sensor height for charging the DHW zone of the store should not be too low, otherwise system performance is adversely affected

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To evaluate the effect of water storage time on the cytotoxicity of soft liners.Methods: Sample discs of soft liners Dentusoft, Dentuflex, Trusoft, Ufi-Gel-P and denture base acrylic resin Lucitone-550 were prepared and divided into four groups: GN: No treatment, G24: Stored in water at 37 degrees C for 24 h; G48: Stored in water at 37 degrees C for 48 h, GHW: Immersed in water at 55 degrees C for 10 min. To analyse the cytotoxic effect, three samples of each group were placed in tubes with Dubelcco's Modified Eagle Mediums and incubated at 37 degrees C for 24 h. During this period, the toxic substances were leached to the culture medium. The cytotoxicity was analysed quantitatively by the incorporation of radioactivity H-3-thymidine checking the number of viable cells (synthesis of DNA). The data were statistically analysed using two-way ANOVA and Tukey's honestly significant difference tests (alpha = 0.05).Results: Treatments did not reduce the cytotoxicity effect of the soft liners (p > 0.05). It was found that Ufi-Gel-P had a non-cytotoxic effect, Trusoft had a slightly cytotoxic effect, Dentuflex had a moderated cytotoxic effect, Dentusoft alternated between slightly and non-cytotoxic effect, and Lucitone-550 had non-cytotoxic effect when stored in water for 48 h.Conclusion: The effect of water storage and the heat treatment did not reduce the cytotoxicity of the soft liners.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and abundance on earth. The proposed system enables an enormous thermal energy storage density of ~1 MWh/m3, which is 10e20 times higher than that of lead-acid batteries, 2e6 times than that of Li-ion batteries and 5e10 times than that of the current state of the art LHTES systems utilized in CSP (concentrated solar power) applications. The discharge efficiency of the system is ultimately determined by the TPV converter, which theoretically can exceed 50%. However, realistic discharge efficiencies utilizing single junction TPV cells are in the range of 20e45%, depending on the semiconductor bandgap and quality, and the photon recycling efficiency. This concept has the potential to achieve output electric energy densities in the range of 200-450 kWhe/m3, which is comparable to the best performing state of the art Lithium-ion batteries.