982 resultados para Heat Strain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the environmentally induced cracking behaviour of the NiTi weldment with and without post-weld heat-treatment (PWHT) in Hanks’ solution at 37.5 °C at OCP were studied by tensile and cyclic slow-strain-rate tests (SSRT), and compared with those tested in oil (an inert environment). Our previous results in the tensile and cyclic SSRT showed that the weldment without PWHT showed high susceptibility to the hydrogen cracking, as evidenced by the degradation of tensile and super-elastic properties when testing in Hanks' solution. The weldment after PWHT was much less susceptible to hydrogen attack in Hanks' solution as no obvious degradation in the tensile and super-elastic properties was observed, and only a very small amount of micro-cracks were found in the fracture surface. The susceptibility to hydrogen cracking of the NiTi weldment could be alleviated by applying PWHT at the optimized temperature of 350 °C after laser welding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the stress-corrosion cracking (SCC) behaviour of laser-welded NiTi wires before and after post-weld heat-treatment (PWHT) was investigated. The samples were subjected to slow strain rate testing (SSRT) under tensile loading in Hanks’ solution at 37.5 °C (or 310.5 K) at a constant anodic potential (200 mVSCE). The current density of the samples during the SSRT was captured by a potentiostat, and used as an indicator to determine the susceptibility to SCC. Fractography was analyzed using scanning-electron microscopy (SEM). The experimental results showed that the laser-welded sample after PWHT was immune to the SCC as evidenced by the stable current density throughout the SSRT. This is attributed to the precipitation of fine and coherent nano-sized Ni4Ti3 precipitates in the welded regions (weld zone, WZ and heat-affected zone, HAZ) after PWHT, resulting in (i) enrichment of TiO2 content in the passive film and (ii) higher resistance against the local plastic deformation in the welded regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constitutive equations including an Arrhenius term have been applied to analyze the hot deformation behavior of a nitride-strengthened (NS) martensitic heat resistant steel in temperature range of 900–1200 °C and strain rate range of 0.001–10 /s. On the basis of analysis of the deformation data, the stress–strain curves up to the peak were divided into four regions, in sequence, representing four processes, namely hardening, dynamic recovery (DRV), dynamic strain induced transformation (DSIT), and dynamic recrystallization (DRX), according to the inflection points in ∂θ/∂σ∂θ/∂σ and ∂(∂θ/∂σ)/∂σ∂(∂θ/∂σ)/∂σ curves. Some of the inflection points have their own meanings. For examples, the minimum of ∂θ/∂σ∂θ/∂σ locates the start of DRV and the maximum of it indicates the start of DRX. The results also showed that the critical strain of DRX was sensitive to ln(Z) below 40, while the critical stress of DRX was sensitive to it above 40. The final microstructures under different deformation conditions were analyzed in terms of softening processes including DRV, DRX, metadynamic crystallization (MDRX) and DSIT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot compression tests were carried out on 9Cr–Nb–V heat resistant steels in the temperature range of 600–1200 °C and the strain rate range of 10−2–100 s−1 to study their deformation characteristics. The full recrystallization temperature and the carbon-free bainite phase transformation temperature were determined by the slope-change points in the curve of mean flow stress versus the inverse of temperature. The parameters of the constitutive equation for the experimental steels were calculated, including the stress exponent and the activation energy. The lower carbon content in steel would increase the fraction of precipitates by increasing the volume of dynamic strain-induced (DSIT) ferrite during deformation. The ln(εc) versus ln(Z) and the ln(σc) versus ln(Z) plots for both steels have similar trends. The efficiency of power dissipation maps with instability maps merged together show excellent workability from the strain of 0.05 to 0.6. The microstructure of the experimental steels was fully recrystallized upon deformation at low Z value owing to the dynamic recrystallization (DRX), and exhibited a necklace structure under the condition of 1050 °C/0.1 s−1 due to the suppression of the secondary flow of DRX. However, there were barely any DRX grains but elongated pancake grains under the condition of 1000 °C/1 s−1 because of the suppression of the metadynamic recrystallization (MDRX).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A constitutive equation was established to describe the deformation behavior of a nitride-strengthened (NS) steel through isothermal compression simulation test. All the parameters in the constitutive equation including the constant and the activation energy were precisely calculated for the NS steel. The result also showed that from the stress-strain curves, there existed two different linear relationships between critical stress and critical strain in the NS steel due to the augmentation of auxiliary softening effect of the dynamic strain-induced transformation. In the calculation of processing maps, with the change of Zener-Hollomon value, three domains of different levels of workability were found, namely excellent workability region with equiaxed-grain microstructure, good workability region with “stripe” microstructure, and the poor workability region with martensitic-ferritic blend microstructure. With the increase of strain, the poor workability region first expanded, then shrank to barely existing, but appeared again at the strain of 0.6.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results from the experimental investigation on heat activated prestressing of Shape Memory Alloy (SMA) wires for active confinement of concrete sections. Active confinement of concrete is found to be much more effective than passive confinement which becomes effective only when the concrete starts to dilate. Active confinement achieved using conventional prestressing techniques often faces many obstacles due to practical limitations. A class of smart materials that has recently drawn attention in civil engineering is the super elastic SMA which has the ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of SMAs can be utilized to develop a convenient prestressing technique for active confinement of concrete sections.
In this study a series of experimental tests are conducted to study Heat Activated Prestress (HAP) in SMAs. Three different types of tests are conducted with different loading protocol to determine parameters such as HAP, residual strain after heating and range of strain that can be used for effective active confinement after HAP. Test results show a maximum HAP of about 500 MPa can be achieved after heating and approximately 450MPa is retained at 25oC in specimens pre-strained by 6%. A substantial amount of strain recovery upon unloading and after heating the SMA wires is recorded. About 2.5% elastic strain recovery upon unloading from 6% strain level is observed. In the specimen pre-strained by 6%, a total of 4% strain is recovered when unloaded after heating. A strain range of 3% is found available for effective confinement after HAP. Test results demonstrate that SMAs have unique features that can be intelligently employed in many civil engineering applications including active confinement of concrete sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central Governor Model (CGM) suggests that perturbations in the rate of heat storage (AS) are centrally integrated to regulate exercise intensity in a feed-forward fashion to prevent excessive thermal strain. We directly tested the CGM by manipulating ambient temperature (Tam) at 20-minute intervals from 20°C to 35°C, and returning to 20°C, while cycling at a set rate of perceived exertion (RPE). The synchronicity of power output (PO) with changes in HS and Tam were quantified using Auto-Regressive Integrated Moving Averages analysis. PO fluctuated irregularly but was not significantly correlated to changes in thermo physiological status. Repeated measures indicated no changes in lactate accumulation. In conclusion, real time dynamic sensation of Tam and integration of HS does not directly influence voluntary pacing strategies during sub-maximal cycling at a constant RPE while non-significant changes in blood lactate suggest an absence of peripheral fatigue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The life-cycle of shallow frontal waves and the impact of deformation strain on their development is investigated using the idealised version of the Met Office non-hydrostatic Unified Model which includes the same physics and dynamics as the operational forecast model. Frontal wave development occurs in two stages; first, a deformation strain is applied to a front and a positive potential vorticity (PV) strip forms, generated by latent heat release in the frontal updraft; second, as the deformation strain is reduced the PV strip breaks up into individual anomalies. The circulations associated with the PV anomalies cause shallow frontal waves to form. The structure of the simulated frontal waves is consistent with the conceptual model of a frontal cyclone. Deeper frontal waves are simulated if the stability of the atmosphere is reduced. Deformation strain rates of different strengths are applied to the PV strip to determine whether a deformation strain threshold exists above which frontal wave development is suppressed. An objective method of frontal wave activity is defined and frontal wave development was found to be suppressed by deformation strain rates $\ge 0.4\times10^{-5}\mbox{s}^{-1}$. This value compares well with observed deformation strain rate thresholds and the analytical solution for the minimum deformation strain rate needed to suppress barotropic frontal wave development. The deformation strain rate threshold is dependent on the strength of the PV strip with strong PV strips able to overcome stronger deformation strain rates (leading to frontal wave development) than weaker PV strips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of the 2003 European heat wave have highlighted the need for society to prepare itself for and cope more effectively with heat waves. This is particularly important in the context of predicted climate change and the likelihood of more frequent extreme climate events; to date, heat as a natural hazard has been largely ignored. In order to develop better coping strategies, this report explores the factors that shape the social impacts of heat waves, and sets out a programme of research to address the considerable knowledge gaps in this area. Heat waves, or periods of anomalous warmth, do not affect everyone; it is the vulnerable individuals or sectors of society who will most experience their effects. The main factors of vulnerability are being elderly, living alone, having a pre-existing disease, being immobile or suffering from mental illness and being economically disadvantaged. The synergistic effects of such factors may prove fatal for some. Heat waves have discernible impacts on society including a rise in mortality, an increased strain on infrastructure (power, water and transport) and a possible rise in social disturbance. Wider impacts may include effects on the retail industry, ecosystem services and tourism. Adapting to more frequent heat waves should include soft engineering options and, where possible, avoid the widespread use of air conditioning which could prove unsustainable in energy terms. Strategies for coping with heat include changing the way in which urban areas are developed or re-developed, and setting up heat watch warning systems based around weather and seasonal climate forecasting and intervention strategies. Although heat waves have discernible effects on society, much remains unknown about their wider social impacts, diffuse health issues and how to manage them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flours from wheat varieties of differing bread-making quality were fractionated using a sequential salt precipitation technique. The gluten fractions in the different varieties varied in the proportion of HMW, LMW glutenins and gliadins. Their rheological behaviour was examined using constant strain (2%) small deformation oscillation tests over frequencies ranging from 0.005 to 10 Hz, before and after heating at 90 degrees C. The fractions containing a higher proportion of HMW glutenins were associated with a predominantly elastic character, whereas fractions containing mostly gliadins exhibited a viscous-like behaviour. The frequency dependent rheological behaviour of fractions containing HMW proteins was less susceptible to heat, and their elastic character was maintained after heating, whereas the rheology of intermediate fractions and fractions containing mostly gliadins was more susceptible to heating, indicating a rapid change from viscous to elastic behaviour after heating. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of ribosome modulation factor (RMF) in protecting heat-stressed Escherichia coli cells was identified by the observation that cultures of a mutant strain lacking functional RMF (HMY15) were highly heat sensitive in stationary phase compared to those of the parent strain (W3110). No difference in heat sensitivity was observed between these strains in exponential phase, during which RMF is not synthesised. Studies by differential scanning calorimetry demonstrated that the ribosomes of stationary-phase cultures of the mutant strain had lower thermal stability than those of the parent strain in stationary phase, or exponential-phase ribosomes. More rapid breakdown of ribosomes in the mutant strain during heating was confirmed by rRNA analysis and sucrose density gradient centrifugation. Analyses of ribosome composition showed that the 100S dimers dissociated more rapidly during heating than 70S particles. While ribosome dimerisation is a consequence of the conformational changes caused by RMF binding, it may not therefore be essential for RMF-mediated ribosome stabilisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Dendritic cells regulate immune responses to microbial products and play a key role in ulcerative colitis (UC) pathology. We determined the immunomodulatory effects of probiotic strain Lactobacillus casei Shirota (LcS) on human DC from healthy controls and active UC patients. METHODS: Human blood DC from healthy controls (control-DC) and UC patients (UC-DC) were conditioned with heat-killed LcS and used to stimulate allogeneic T cells in a 5-day mixed leucocyte reaction. RESULTS: UC-DC displayed a reduced stimulatory capacity for T cells (P < 0.05) and enhanced expression of skin-homing markers CLA and CCR4 on stimulated T cells (P < 0.05) that were negative for gut-homing marker β7. LcS treatment restored the stimulatory capacity of UC-DC, reflecting that of control-DC. LcS treatment conditioned control-DC to induce CLA on T cells in conjunction with β7, generating a multihoming profile, but had no effects on UC-DC. Finally, LcS treatment enhanced DC ability to induce TGFβ production by T cells in controls but not UC patients. CONCLUSIONS: We demonstrate a systemic, dysregulated DC function in UC that may account for the propensity of UC patients to develop cutaneous manifestations. LcS has multifunctional immunoregulatory activities depending on the inflammatory state; therapeutic effects reported in UC may be due to promotion of homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The natural diversity of the eft operons, encoding the heat-labile toxin LT-I (LT), carried by enterotoxigenic Escherichia coli (ETEC) strains isolated from humans was investigated. For many years, LT was supposed to be represented by a rather conserved toxin, and one derivative, produced by the reference H10407 strain, was intensively studied either as a virulence factor or as a vaccine adjuvant. Amplicons encompassing the two LT-encoding genes (eltA and eltB) of 51 human-derived ETEC strains, either LT+ (25 strains) only or LT+/ST+ (26 strains), isolated from asymptomatic (24 strains) or diarrheic (27 strains) subjects, were subjected to restriction fragment length polymorphism (RFLP) analysis and DNA sequencing. Seven polymorphic RFLP types of the H10407 strain were detected with six (BsaI, DdeI, HhaI, HincII, HphI, and MspI) restriction enzymes. Additionally, the single-nucleotide polymorphic analysis revealed 50 base changes in the eft operon, including 21 polymorphic sites at eltA and 9 at eltB. Based on the deduced amino acid sequences, 16 LT types were identified, including LT1, expressed by the H10407 strain and 23 other strains belonging to seven different serotypes, and LT2, expressed by 11 strains of six different serotypes. In vitro experiments carried out with purified toxins indicated that no significant differences in GM1-binding affinity could be detected among LT1, LT2, and LT4. However, LT4, but not other toxin types, showed reduced toxic activities measured either in vitro with cultured cells (Y-1 cells) or in vivo in rabbit ligated ileal loops. Collectively, these results indicate that the natural diversity of LTs produced by wild-type ETEC strains isolated from human hosts is considerably larger than previously assumed and may impact the pathogeneses of the strains and the epidemiology of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat-labile toxins (LTs) have ADP-ribosylation activity and induce the secretory diarrhea caused by enterotoxigenic Escherichia coli (ETEC) strains in different mammalian hosts. LTs also act as adjuvants following delivery via mucosal, parenteral, or transcutaneous routes. Previously we have shown that LT produced by human-derived ETEC strains encompass a group of 16 polymorphic variants, including the reference toxin (LT1 or hLT) produced by the H10407 strain and one variant that is found mainly among bacterial strains isolated from pigs (LT4 or pLT). Herein, we show that LT4 ( with six polymorphic sites in the A (K4R, K213E, and N238D) and B (S4T, A46E, and E102K) subunits) displays differential in vitro toxicity and in vivo adjuvant activities compared with LT1. One in vitro generated LT mutant (LTK4R), in which the lysine at position 4 of the A subunit was replaced by arginine, showed most of the LT4 features with an similar to 10-fold reduction of the cytotonic effects, ADP-ribosylation activity, and accumulation of intracellular cAMP in Y1 cells. Molecular dynamic studies of the A subunit showed that the K4R replacement reduces the N-terminal region flexibility and decreases the catalytic site crevice. Noticeably, LT4 showed a stronger Th1-biased adjuvant activity with regard to LT1, particularly concerning activation of cytotoxic CD8(+) T lymphocytes when delivered via the intranasal route. Our results further emphasize the relevance of LT polymorphism among human-derived ETEC strains that may impact both the pathogenicity of the bacterial strain and the use of these toxins as potential vaccine adjuvants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oral pathogen Streptococcus mutans expresses a surface protein, P1, which interacts with the salivary pellicle on the tooth surface or with fluid-phase saliva, resulting in bacterial adhesion or aggregation, respectively. P1 is a target of protective immunity. Its N-terminal region has been associated with adhesion and aggregation functions and contains epitopes recognized by efficacious antibodies. In this study, we used Bacillus subtilis, a gram-positive expression host, to produce a recombinant N-terminal polypeptide of P1 (P1(39-512)) derived from the S. mutans strain UA159. Purified P1(39-512) reacted with an anti-full-length P1 antiserum as well as one raised against intact S. mutans cells, indicating preserved antigenicity. Immunization of mice with soluble and heat-denatured P1(39-512) induced antibodies that reacted specifically with native P1 on the surface of S. mutans cells. The anti-P1(39-512) antiserum was as effective at blocking saliva-mediated aggregation of S. mutans cells and better at blocking bacterial adhesion to saliva-coated plastic surfaces compared with the anti-full-length P1 antiserum. In addition, adsorption of the anti-P1 antiserum with P1(39-512) eliminated its ability to block the adhesion of S. mutans cells to abiotic surfaces. The present results indicate that P1(39-512), expressed and purified from a recombinant B. subtilis strain, maintains important immunological features of the native protein and represents an additional tool for the development of anticaries vaccines.