980 resultados para Hausdorff Approximation
Resumo:
The weak selection approximation of population genetics has made possible the analysis of social evolution under a considerable variety of biological scenarios. Despite its extensive usage, the accuracy of weak selection in predicting the emergence of altruism under limited dispersal when selection intensity increases remains unclear. Here, we derive the condition for the spread of an altruistic mutant in the infinite island model of dispersal under a Moran reproductive process and arbitrary strength of selection. The simplicity of the model allows us to compare weak and strong selection regimes analytically. Our results demonstrate that the weak selection approximation is robust to moderate increases in selection intensity and therefore provides a good approximation to understand the invasion of altruism in spatially structured population. In particular, we find that the weak selection approximation is excellent even if selection is very strong, when either migration is much stronger than selection or when patches are large. Importantly, we emphasize that the weak selection approximation provides the ideal condition for the invasion of altruism, and increasing selection intensity will impede the emergence of altruism. We discuss that this should also hold for more complicated life cycles and for culturally transmitted altruism. Using the weak selection approximation is therefore unlikely to miss out on any demographic scenario that lead to the evolution of altruism under limited dispersal.
Resumo:
El text intenta fer una primera aproximació al debat contemporani entre realistes i anti-realistes sobre el món empíric, centrant-se en les posicions de Putnam i Nagel. El seu objectiu principal és el d'entendre les motivacions de les posicions i l'estructura actual del debat, i el d'establir les característiques que hauria de tenir qualsevol posició satisfactòria
Resumo:
The principal focus of the PhD thesis lies in the Social Software area and the appropriation of technology in "non-Western" societies taking the example of Bulgaria. The term "non-Western" is used to explain places considered technologically underdeveloped. The aims have been to capture how Bulgarian users creatively interpret and appropriate Internet identifying the sociocultural, political and subjective conditions in which that appropriation occurs, to identify emerging practices based on the interpretation and use of Internet and the impact they had on society and what conditions could influence the technological interpretation and the meaning these practices had for both users and social configuration of Internet as media in Bulgaria. An ethnographic approach has been used simultaneously in different online and offline contexts. On the one hand, this study is based on exploration of the Bulgarian Internet Space through online participant observation in forums and websites reviews and on the other hand, on semi-structured interviews with different types of users of the virtual platforms found, made both face to face and online and finally online participant observation at the same platforms. It is based on some contributions of the ethnographic work of Christine Hine in virtual environments and the notions of time and space of Barbara Czarniawska contextualized in the modern form of organization that occurs in a network of multiple and fragmented contexts across many movements.
Resumo:
In this article we review first some of the possibilities in which the notions of Fo lner sequences and quasidiagonality have been applied to spectral approximation problems. We construct then a canonical Fo lner sequence for the crossed product of a concrete C* -algebra and a discrete amenable group. We apply our results to the rotation algebra (which contains interesting operators like almost Mathieu operators or periodic magnetic Schrödinger operators on graphs) and the C* -algebra generated by bounded Jacobi operators.
Resumo:
We formulate a necessary and sufficient condition for polynomials to be dense in a space of continuous functions on the real line, with respect to Bernstein's weighted uniform norm. Equivalently, for a positive finite measure [lletra "mu" minúscula de l'alfabet grec] on the real line we give a criterion for density of polynomials in Lp[lletra "mu" minúscula de l'alfabet grec entre parèntesis].
Resumo:
Pippenger [Pi77] showed the existence of (6m,4m,3m,6)-concentrator for each positive integer m using a probabilistic method. We generalize his approach and prove existence of (6m,4m,3m,5.05)-concentrator (which is no longer regular, but has fewer edges). We apply this result to improve the constant of approximation of almost additive set functions by additive set functions from 44.5 (established by Kalton and Roberts in [KaRo83] to 39. We show a more direct connection of the latter problem to the Whitney type estimate for approximation of continuous functions on a cube in &b&R&/b&&sup&d&/sup& by linear functions, and improve the estimate of this Whitney constant from 802 (proved by Brudnyi and Kalton in [BrKa00] to 73.
Resumo:
Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small
Resumo:
The network revenue management (RM) problem arises in airline, hotel, media,and other industries where the sale products use multiple resources. It can be formulatedas a stochastic dynamic program but the dynamic program is computationallyintractable because of an exponentially large state space, and a number of heuristicshave been proposed to approximate it. Notable amongst these -both for their revenueperformance, as well as their theoretically sound basis- are approximate dynamic programmingmethods that approximate the value function by basis functions (both affinefunctions as well as piecewise-linear functions have been proposed for network RM)and decomposition methods that relax the constraints of the dynamic program to solvesimpler dynamic programs (such as the Lagrangian relaxation methods). In this paperwe show that these two seemingly distinct approaches coincide for the network RMdynamic program, i.e., the piecewise-linear approximation method and the Lagrangianrelaxation method are one and the same.
Resumo:
Using a suitable Hull and White type formula we develop a methodology to obtain asecond order approximation to the implied volatility for very short maturities. Using thisapproximation we accurately calibrate the full set of parameters of the Heston model. Oneof the reasons that makes our calibration for short maturities so accurate is that we alsotake into account the term-structure for large maturities. We may say that calibration isnot "memoryless", in the sense that the option's behavior far away from maturity doesinfluence calibration when the option gets close to expiration. Our results provide a wayto perform a quick calibration of a closed-form approximation to vanilla options that canthen be used to price exotic derivatives. The methodology is simple, accurate, fast, andit requires a minimal computational cost.
Resumo:
In this paper we propose a general technique to develop first and second order closed-form approximation formulas for short-time options withrandom strikes. Our method is based on Malliavin calculus techniques andallows us to obtain simple closed-form approximation formulas dependingon the derivative operator. The numerical analysis shows that these formulas are extremely accurate and improve some previous approaches ontwo-assets and three-assets spread options as Kirk's formula or the decomposition mehod presented in Alòs, Eydeland and Laurence (2011).
Resumo:
In this article two aims are pursued: on the one hand, to present arapidly converging algorithm for the approximation of square roots; on theother hand and based on the previous algorithm, to find the Pierce expansionsof a certain class of quadratic irrationals as an alternative way to themethod presented in 1984 by J.O. Shallit; we extend the method to findalso the Pierce expansions of quadratic irrationals of the form $2 (p-1)(p - \sqrt{p^2 - 1})$ which are not covered in Shallit's work.
Resumo:
By means of Malliavin Calculus we see that the classical Hull and White formulafor option pricing can be extended to the case where the noise driving thevolatility process is correlated with the noise driving the stock prices. Thisextension will allow us to construct option pricing approximation formulas.Numerical examples are presented.