831 resultados para Hanson
Resumo:
View of timber batten screen to verandah behind and entrance stair, as seen from exterior.
Resumo:
View of timber batten screen to north-east elevation with verandah behind.
Resumo:
View of steel-framed timber screen to verandah.
Resumo:
View of second floor reading area with rigid frames and air-conditioning ducting.
Resumo:
View to south-east elevation as seen from exterior.
Resumo:
North-west elevation as seen from Building K.
Resumo:
View to entrance verandah on north-east elevation and sunshades to north-west elevation.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
The complexes [Fe([9]aneN(2)S)(2)][ClO4](2), [Fe([9]aneN(2)S)(2)][ClO4](3) and [Fe([9]aneNS(2))(2)][ClO4](2) ([9]aneN(2)S = 1-thia-4. 7-diazacyclononane and [9]aneNS(2) = 1,4-dithia-7-azacyclononane) have been prepared and the latter two characterised by X-ray crystallography. The Mossbauer spectra (isomer shift/mm s(-1), quadrupole splitting/mm s(-1), 4.2 K) for [Fe([9]aneN(2)S)(2)][ClO4](2) (0.52, 0.57), [Fe([9]aneN(2)S)(2)][ClO4](3) (0.25, 2.72) and [Fe([9]aneNS(2))(2)][ClO4](2) (0.43, 0.28) are typical for iron(II) and iron(III) complexes. Variable-temperature susceptibility measurements for [Fe([9]aneN(2)S)(2)][ClO4](2) (2-300 K) revealed temperature-dependent behaviour in both the solid state [2.95 mu(B) (300 K)-0.5 mu(B) (4.2 K)] and solution (Delta H degrees 20-22 kJ mol(-1), Delta S degrees 53-60 J mol(-1) K-1). For [Fe([9]aneN(2)S)(2)][ClO4](3) in the solid state [2.3 mu(B) (300 K)-1.9 mu(B) (4.2 K)] the magnetic data were fit to a simple model (H = -lambda L . S + mu L-z) to give the spin-orbit coupling constant (lambda) of -260 +/- 10 cm(-1). The solid-state X-band EPR spectrum of [Fe([9]aneN(2)S)(2)][ClO4](3) revealed axial symmetry (g(perpendicular to) = 2.607, g(parallel to) = 1.599). Resolution of g(perpendicular to) into two components at Q-band frequencies indicated a rhombic distortion. The low-temperature single-crystal absorption spectra of [Fe([9]aneN(2)S)(2)][ClO4](2) and [Fe([9]aneNS(2))(2)][ClO4](2) exhibited additional bands which resembled pseudotetragonal low-symmetry splitting of the parent octahedral (1)A(1g) --> T-1(2g) and (1)A(1g) ---> T-1(1g) transitions. However, the magnitude of these splittings was too large, requiring 10Dq for the thioether donors to be significantly larger than for the amine donors. Instead, these bands were tentatively assigned to weak, low-energy S --> Fe-II charge-transfer transitions. Above 200 K, thermal occupation of the high-spin T-5(2g) ground state resulted in observation of the T-5(2g) --> E-5(g) transition in the crystal spectrum of [Fe([9]aneN(2)S)(2)][ClO4](2). From a temperature-dependence study, the separation of the low-spin (1)A(1g) and high-spin T-5(2g) ground states was approximately 1700 cm(-1). The spectrum of the iron(III) complex [Fe([9]aneN(2)S)(2)][ClO4](3) is consistent with a low-spin d(5) configuration.
Resumo:
This paper examines the role of the Canberra Commission in terms of consolidating and influencing the agenda on international negotiations towards the elimination of nuclear weapons. The Commission's Report is significant for two main reasons. First, it represents a unique form of disarmament diplomacy by the Australian Government which combined the post-Cold War international climate of security cooperation with the foreign policy aspirations of an activist middle power. Second, the Report refutes the strategic, technological and political arguments against nuclear elimination in a comprehensive and convincing manner, arguing that without elimination, the world faces increased threats of nuclear proliferation and nuclear terrorism. This paper thus concludes that the Canberra Commission has been instrumental in strengthening the taboo against the possession, testing or use of nuclear weapons.
Resumo:
A new cyclic octapeptide, cyclo(Ile-Ser-(Gly)Thz-Ile-Thr-(Gly)Thz) (PatN), related to patellamide A, has been synthesized and reacted with copper(II) and base to form mono- and dinuclear complexes. The coordination environments around copper(TI) have been characterized by EPR spectroscopy. The solution structure of the thermodynamically most stable product, a purple dicopper(TI) compound, has been examined by simulating weakly dipole-dipole coupled EPR spectra based upon structural parameters obtained from force field (MM and MD) calculations. The MM-EPR method produces a saddle-shaped structure for [Cu-2(PatN)(OH2)(6)] that is similar to the known solution structure of patellamide A and the known solid-state structure of [Cu-2(AscidH(2))CO3(OH2)(2)]. Compared with the latter, [Cu-2(PatN)] has no carbonate bridge and a significantly flatter topology. The MM-EPR approach to solution-structure determination for paramagnetic metallopeptides may find wide applications to other metallopeptides and metalloproteins.
Resumo:
The interactions between zinc salts and the naturally occurring cyclic octapeptide ascidiacyclamide in methanol, as well as a synthetic analogue cyclo[Ile(Oxn)-D-Val(Thz)](2), were monitored by H-1 NMR and CD spectroscopy. Three zinc complexes were identified, their relative amounts depending on the nature of the anion (perchlorate, triflate or chloride) and the presence or absence of base. Binding constants for two of the zinc species were calculated from CD or H-1 NMR spectra, [Zn(L - H)](+) (KZn(L-H) = [Zn(L - H)(+)]/[Zn2+][(L - H)(-)] = 10(7 +/- 2) M-1; 95% methanol/5% water, 298.0 K, NEt3/HClO4 buffer 0.04 M) and [ZnLCl](+) (K-ZnCIL = [ZnCIL+]/[Zn2+][Cl-][L] = 10(7.2) (+/-) (0.1) M-2; d(3)-methanol, 301 K).
Resumo:
The bis(mu-hydroxo) complex [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)](PF6)(2) (Me-2[9]aneN(2)S = N,N'-dimethyl-1-thia-4,7-diazacyclononane) results after reaction of [Cu(Me-2[9]aneN(2)S)(MeCN)] (PF6) with dioxygen at -78 degrees C in acetonitrile. The complex has been characterized by X-ray crystallography: orthorhombic, space group Pnma, with a 18.710(3), b 16.758(2), c 9.593(2) Angstrom, and Z = 4. The structure refined to a final R value of 0.051. The complex contains two copper(II) ions bridged by two hydroxo groups with Cu ... Cu 2.866(1) Angstrom. The solid-state magnetic susceptibility study reveals ferromagnetic coupling, the fitting parameters being J = +46+/-5 cm(-1), g = 2.01+/-0.01 and theta = -0.58+/-0.03 K. The frozen-solution e.p.r. spectrum in dimethyl sulfoxide is characteristic of a monomeric copper(II) ion (g(parallel to) 2.300, g(perpendicular to) 2.063; A(parallel to) 156.2 x 10(-4) cm(-1), A(perpendicular to) 9.0 x 10(-4) cm(-1)) with an N2O2 donor set. Thioether coordination to the copper(II) in solution is supported by the presence of an intense absorption assigned to a sigma(S)-->Cu-II LMCT transition at c. 34000 cm(-1). The single-crystal spectrum of [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)] (PF6)(2) (273 K) reveals d-->d transitions at 14500 and 18300 cm(-1) and a weak pi(S)-->Cu-II charge-transfer band at approximately 25000 cm(-1).
Resumo:
A comparison is made between the structures and calcium binding properties of four cyclic octapeptides that differ in the number of heterocyclic thiazole and oxazoline ring constraints. The conformations of the naturally occurring cyclic octapeptides ascidiacyclamide 1 and patellamide D 2, which each contain two oxazoline and two thiazole rings, are compared by H-1 NMR spectroscopy with the analogues cyclo(Thr-D-Val(Thz)-Ile)(2) 3 with just two thiazoles, and cyclo(Thr-D-Val-alpha Abu-Ile)(2) 4, with no 5-membered rings. The conformations observed in the solid state for ascidiacyclamide (saddle) and patellamide D (twisted figure of eight) were retained in solution, whilst peptide 3 was found to have a chair shape and peptide 4 displayed a range of conformations. The solid state structure of 4 revealed that the peptide takes a relatively planar conformation with a number of transannular hydrogen bonds, which are apparently retained in solution. Complexation studies utilising H-1 NMR and CD spectroscopy yielded 1∶1 calcium-peptide binding constants (log K) for the four peptides (2.9 (1), 2.8 (2), 4.0 (3) and 5.5 (4)) as well as a 1 : 2 metal-peptide binding constant for 3 (log K = 4.5). The affinity for Ca2+ thus decreases with increasing number of 5-membered ring constraints in the macrocycle (4 > 3 > 2 approximate to 1).
Resumo:
Solution conformation and calcium binding properties have been investigated for the two cyclic octapeptides cyclo(-D-Thr-D-Val(Thz)-Ile-)(2) (4) and cyclo(-Thr-Gly(Thz)-Ile-Ser-Gly(Thz)-Ile-)(5) and the results are compared to those for the cyclic octapeptides previously studied; ascidiacyclamide (1), patellamide D (2), cyclo(-Thr-D-Val(Thz)-Ile-)(2) (3), and cyclo(-Thr-D-Val-alphaAbu-Ile-)2 (6). Both 4 and 5 contain two heterocyclic thiazole ring constraints but the latter has a larger degree of flexibility as a consequence of the glycine residues within the cyclic framework. The solution conformation of 4 and 5 was determined from H-1 NMR spectra and found to be a twisted figure of eight similar to that for 2. Complexation studies using H-1 NMR and CD spectroscopy yielded 1 : 1 calcium-peptide binding constants (logK) for the two peptides (2.3 (4) and 5.7 (5)). For 5 the magnitude of the binding constant was verified by a competition titration using CD. The different calcium-binding affinities of 3 (logK = 4.0) and 4 is attributed to the stereochemistry of the threonine residue. The magnitude of the binding constant for 5 compared to 3 and 4 (all peptides containing two thiazole ring constrains) demonstrates that the increase in flexibility of the cyclic peptide has a dramatic effect on the Ca2+ binding ability. The affinity for Ca2+ thus decreases in the order (6 similar to 5 > 3 > 2 similar to 1 > 4). The number of carbonyl donors available on each peptide has only a limited effect on calcium binding. The most important factor is the flexibility, which allows for a conformation of the peptide capable of binding calcium efficiently.