85 resultados para Haliotis Asinina
Resumo:
[EN] First description of the complete embryo and larval development of the Canarian abalone (Haliotis tuberculata coccinea Reeve.) was conducted along 39 stages from fertilization to the appearance of the third tubule on the cephalic tentacles and illustrated in a microphotographic sequence. Eggs obtained by induced spawning with hydrogen peroxide from the GIA captive broodstock were stocked at a density of 10 eggs/mL and kept at 23 0.5 BC for 62 h until the formation of the third tubule. Live eggs and larvae were continuously observed on a 24 h basis at a 3400 magnification under transmitted light. At each stages, specific morphological features, illustrated by microscopic photographs, were described, as well as the time required for their apparition. Fertilized eggs diameter was 205 8 mm (mean SD), whereas length and width of larvae ready to undergo metamorphosis were 216.6 5.3 mmand 172 8.8 mm, respectively. Knowledge on the larval morphological development acquired through this study will contribute to the improvement of larval rearing techniques for this abalone species.
Resumo:
Programa de doctorado: Acuicultura: producción controlda de animales acuáticos
Resumo:
Programa de doctorado: Acuicultura
Resumo:
Zusammenfassung:Die Quartärstruktur des respiratorischen Proteins Hämocyanin (Isoform HtH1) aus der marinen Schnecke Haliotis tuberculata wurde vermittels Kryoelektronen-mikroskopie und 3D-Rekonstruktion untersucht. Das Molekül ist zylinderförmig, hat einen Durchmesser von ca. 35 nm und besteht aus einer Zylinderwand und einem internen Kragenkomplex. Dieser wiederum besteht aus einem Collar und einem Arc.Die kryoelektronenmikroskopischen Aufnahmen von in glasartigem Eis fixierten HtH1-Molekülen brachte eine enorme Verbesserung der Anzahl der zur Verfügung stehenden Ansichtswinkel gegenüber den negativkontrastierten Molekülen, die auf Karbonfilm präpariert waren.Die 3D-Rekonstruktion des HtH1 mittels Aufnahmen bei drei verschiedenen Defo-kuswerten verbesserte die Auflösung noch einmal deutlich gegenüber den Rekon-struktionen, die aus Aufnahmen bei einem festen Defokuswert gemacht wurden, und zwar auf 12 Å. Das Molekül besitzt eine D5-Symmetrie.Aus dieser bisher genausten Rekonstruktion eines Molluskenhämocyanins aus EM-Bildern ließen sich folgende neue Strukturdetails ableiten:· Ein Untereinheitendimer konnte als Repeating Unit im Dekamer des HtH1 beschrieben werden.· Das Untereinheitendimer konnte aus der 3D-Dichtekarte isoliert werden. Es be-steht eindeutig aus 16 Massen, die funktionellen Domänen entsprechen. Zwei dieser Massen bilden den Collar, zwei den Arc und 12 das Wandsegment.· Die gegenläufige Anordnung der beiden Untereinheiten innerhalb dieses Unte-reinheitendimers konnten bestätigt und auf zwei Möglichkeiten eingeschränkt werden.· Die Zahl der alternativen Anordnungen der 16 funktionellen Domänen (HtH1-a bis HtH1-h) im Untereinheitendimer konnten von 80 auf 2 eingeengt werden.· Es konnte über molekulares Modellieren mithilfe einer publizierten Kristallstruk-tur eine 3D-Struktur fastatomarer Auflösung der funktionellen Domäne HtH1-g berechnet werden.· Die funktionelle Domäne HtH1-g konnte als Domänenpaar plausibel in die 3D?Dichtekarte des Untereinheitendimers eingepasst werden, und zwar in die beiden Massen des Arc.Aus der elektronenmikroskopisch gewonnenen Dichtekarte wurde mit Hilfe des
Resumo:
Als erste komplette Sequenz eines Gastropoden-Hämocyanins wurde das Hämocyanin von Haliotis tuberculata über cDNA vollständig kloniert und sequenziert. Die Primärstruktur besteht aus 3404 Aminosäuren mit einer errechneten Molekülmasse von 392 kDa. Neben der vollständigen Primärstruktur des sezernierten Proteins ist in der cDNA eine Signalsequenz kodiert. Mit Hilfe spezifischer Primer wurde die Genstruktur des HtH1-Gens zwischen der Signalsequenz und dem 3´-UTR über PCR aus genomischer DNA ermittelt. Dies ist die erste bekannte Genstruktur eines Schnecken-Hämocyanins. Das Gen umfaßt etwa 28,6 kb und besteht aus 17 Exons und 16 Introns. Die kodierende Sequenz des Signalpeptids und der acht FUs sind in den Linker-Regionen durch Introns (Linker-Introns) getrennt. Die Signalsequenz von bislang 48 Nukleotiden sowie die Sequenz der funktionellen Domänen HtH1-a, HtH1-f und HtH1-g sind durch 'interne' Introns in zwei bis vier Exons unterteilt. Von der Untereinheit HtH2 wurde über cDNA und genomische PCR die vollständige kodierende Sequenz der funktionellen Domänen HtH2-b bis HtH2-h und ein großer Teil von HtH2-a sequenziert. Die partielle Primärstruktur umfaßt 3307 Aminosäuren. Es fehlen noch etwa 100 Aminosäuren aus dem N-terminalen Bereich von HtH2-a. Das Fragment des HtH2-Gens von 18,3 kb besteht aus 15 Exons und 14 Introns. Die Exon-Größen und die Positionen sowie Phasen der Introns entsprechen exakt den Verhältnissen im HtH1-Gen. Multiple Sequenzalignments und daraus erstellte phylogenetische Stammbäume mit den abgeleiteten Aminosäuresequenzen von HtH1, HtH2 und anderen Mollusken-Hämocyaninen zeigen die Verwandtschaftsverhältnisse der Mollusken-Hämocyanine. Auf der Annahme basierend, daß eine 'molekulare Uhr' existiert, läßt sich mit Hilfe einer Distanzmatrix die Phylogenie der Mollusken-Hämocyanine rekapitulieren und die einzelnen Aufspaltungsereignisse im Verlauf der Evolution der Mollusken datieren.
Resumo:
Increasing levels of anthropogenic carbon dioxide in the world's oceans are resulting in a decrease in the availability of carbonate ions and a drop in seawater pH. This process, known as ocean acidification, is a potential threat to marine populations via alterations in survival and development. To date, however, little research has examined the effects of ocean acidification on rare or endangered species. To begin to assess the impacts of acidification on endangered northern abalone (Haliotis kamtschatkana) populations, we exposed H. kamtschatkana larvae to various levels of CO2 [400 ppm (ambient), 800 ppm, and 1800 ppm CO2] and measured survival, settlement, shell size, and shell development. Larval survival decreased by ca. 40% in elevated CO2 treatments relative to the 400 ppm control. However, CO2 had no effect on the proportion of surviving larvae that metamorphosed at the end of the experiment. Larval shell abnormalities became apparent in approximately 40% of larvae reared at 800 ppm CO2, and almost all larvae reared at 1800 ppm CO2 either developed an abnormal shell or lacked a shell completely. Of the larvae that did not show shell abnormalities, shell size was reduced by 5% at 800 ppm compared to the control. Overall, larval development of H. kamtschatkana was found to be sensitive to ocean acidification. Near future levels of CO2 will likely pose a significant additional threat to this species, which is already endangered with extinction due in part to limited reproductive output and larval recruitment.
Resumo:
The productivity of a fisheries resource can be quantified from estimates of recruitment, individual growth and natural and fisheries-related mortality, assuming the spatial extent of the resource has been quantified and there is minimal immigration or emigration. The sustainability of a fisheries resource is facilitated by management controls such as minimum and maximum size limits and total allowable catch. Minimum size limits are often set to allow individuals the opportunity to reproduce at least once before the chance of capture. Total allowable catches are a proportion of the population biomass, which is estimated based on known reproduction, recruitment, mortality and growth rates. In some fisheries, however, management actions are put in place without quantification of the resource through the stock assessment process. This occurs because species-specific information, for example individual growth, may not be available. In these circumstances, management actions need to be precautionary to protect against future resource collapse, but this often means that the resource is lightly exploited. Consequently, the productivity of the resource is not fully realised. Australia’s most valuable fisheries are invertebrate fisheries (Australian Department of Agriculture Fisheries and Forestry, 2008). For example, Australian fisheries (i.e. excluding aquaculture) production of crustaceans (largely prawns, rock lobster and crab) was 41,000 tonnes in 2006/7, worth $778 million. Production from mollusc (largely abalone, scallops, oysters and squid) fisheries was 39,000 tonnes, worth $502 million. Together, in 2006/7 crustacean and mollusc fisheries represented 58% of the total value of Australian wild fisheries production. Sustainable management of Australia’s invertebrate fisheries is frustrated by the lack of data on species-specific growth rates. This project investigated a new method to estimate age, and hence individual growth rates, in invertebrate fisheries species. The principle behind the new aging method was that telomeres (i.e. DNA end-caps of chromosomes) get shorter as an individual gets older. We studied commercial crustacean and molluscan species. A vertebrate fish species (silver perch, Bidyanus bidyanus) was used as a control to standardise our work against the literature. We found a clear relationship between telomere length and shell size for temperate abalone (Haliotis rubra). Further research is recommended before the method can be implemented to assist management of wildharvested abalone populations. Age needs to be substituted for shell size in the relationship and it needs to be studied for abalone from several regions. This project showed that telomere length declined with increasing age in Sydney rock oysters (Saccostrea glomerata) and was affected by regional variation. A relationship was not apparent between telomere length and age (or size as a surrogate for age) for crustacean species (school prawns, Metapenaeus macleayi; eastern rock lobster, Sagmariasus verreauxi; southern rock lobster, Jasus edwardsii; and spanner crabs, Ranina ranina). For school prawns, there was no difference between telomere length in males and females. Further research is recommended, however, as telomeric DNA from crustaceans was difficult to analyse using the terminal restriction fragment (TRF) assay. Telomere lengths of spanner crabs and lobsters were at the upper limit of resolution of the assay used and results were affected by degradation and possible contamination of telomeric DNA. It is possible that telomere length is an indicator of remaining lifespan in molluscan and crustacean individuals, as suggested for some vertebrate species (e.g. Monaghan, 2010). Among abalone of similar shell size and among lobster pueruli, there was evidence of individuals having significantly longer or shorter telomeres than the group average. At a population level, this may be a surrogate for estimates of future natural mortality, which may have usefulness in the management of those populations. The method used to assay telomere length (terminal restriction fragment assay) performed adequately for most species, but it was too expensive and time-consuming to be considered a useful tool for gathering information for fisheries management. Research on alternative methods is strongly recommended.
Resumo:
All abalones belong to the genus Haliotis sensu latu, family Haliotidae. The 75 species known worldwide (Booloot ian et, al. 1962) are anatomically similar and all are adapted for attachment to hard substrates. Seven species are widely distributed along the coast of California (Cox 1962; Mottet 19781, of which several are important in the comercial and sport fisheries of the Pacific Southwest. (PDF has 19 pages.)
Resumo:
China's marine aquaculture landings provide only 18% of its combined freshwater and amrine capture and culture landings, at a per-capita consumption of only 3.2 kg/yr out of a total of 18.1 kg/yr. We described development and some of the results of long-term mariculture and stocking/enhancement projects that have been underway for up to 20 years in the Hangzhou Bay area. Penaeus orientalis (also referred to as P. chinensis) stocking provided up to 400 t/yr, at a total cost-benefit ratio of up to 8 Yuan of landed shrimp per Yuan invested in shrimp stocking. Over 40 t of Penaeus orientalis were produced commercially in 1993, with proceeds being used to fund mariculture and fisheries research. Large scale edible jellyfish restocking is also underway, while semicommercial culture of abalone, Haliotis diversicolor, has been successful. Technical problems limitig mariculture have been solved successfully for some species.
Resumo:
Catalase is an important antioxidant protein that protects organisms against various oxidative stresses by eliminating hydrogen peroxide. The full-length catalase cDNA of Chinese shrimp Fenneropenaeus chinensis was cloned from the hepatopancreas using degenerate primers by the method of 3' and 5' rapid amplification of cDNA ends PCR. The cDNA sequence consists of 1892 bp with a 1560 bp open reading frame, encoding 520 amino acids with high identity to invertebrate, vertebrate and even bacterial catalases. The sequence includes the catalytic residues His71, Asn144, and Tyr354. The molecular mass of the predicted protein is 58824.04 Da with an estimated pl of 6.63. Sequence comparison showed that the deduced amino acid sequence of F. chinensis catalase shares 96%, 73%, 71% and 70% identity with that of Pacific white shrimp Litopenaeus vannamei, Abalone Haliotis discus hannai, Zhikong scallop Chlamys farreri and Human Homo sapiens, respectively. Catalase transcripts were detected in hepatopancreas, hemocytes, lymphoid organ, intestine, ovary, muscle and gill. by real-time PCR. The variation of catalase mRNA transcripts in hemocytes and hepatopancreas was also quantified by real-time PCR and the result indicated that the catalase showed up-regulated expression trends in hemocytes at 14 h and in hepatopancreas at 37 h after injection with white spot syndrome virus (WSSV). (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Polyculture of seaweeds alongside fed animal aquaculture is an environmentally friendly means of avoiding eutrophication problem both in land-based and sea-based monoculture systems. Many aspects of such polyculture systems have been described, but little attention has been given to the impact of live seaweeds on the microbiological properties of the water that connects the algae and animals. In this investigation, the Pacific red alga Gracilaria textorii was cultured in a recirculated dual tank system (150 L) with the juvenile abalone Haliotis discus hannai. Dynamic changes of total bacteria (TB) and total Vibrio (TV) in the water of polyculture and monoculture systems were evaluated. Results revealed that (1) level of TB in the polyculture was constantly higher than in the monoculture over a 6.5-day period. While levels of TV in the polyculture was detected to be constantly lower than in the monoculture, (2) integration of G. textorii in the abalone culture changed the Vibrio compositions in the water as judged by the changes of bacteria colony types; (3) application of artificial diet led to dramatic increase of the levels in TB and TV in both systems at 12 h after application in the 24-h test and resulted in selective propagation of Vibrio in the water in the monoculture system; (4) polyculture of G. textorii with juvenile abalone in combination with feeding with live algal diet helped to maintain low levels of TV and the balance of the Vibrio composition; (5) living biomass of G. textorii was effective in preventing propagation of two purified Vibrio strains (V alginolaticus and V logei) in the water. These results provide a general basis of the dynamic changes of levels in TB and TV in a seaweed-abalone polyculture system with or without artificial diet in tanks. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
In the current abalone hatchery in China, insufficient diatoms on vertically placed corrugated pvc plates at later stage often could not support the growth of postlarvae up to the stage that they can feed on live macroalgae. As a result, stripping the spats (35 mm) off by anaesthetization and switching the diet from live diatoms to artificial powdered diet in combination has to be performed in most of the abalone farms. This manipulation normally leads to more than 50% mortality. Here we report the direct use of the unicellular green alga Platymonas helgolandica Kylin var. tsingtaoensis as a potential alga to be used to settle the veliger larvae of the Pacific abalone Haliotis discus hannai and to feed the postlarvae. Settlement rate of 2-day-old veliger larvae in mono culture of P helgolandica could be as high as 92% ( +/- 4.2%) on day 10 in small scale trials, higher than that in the selected benthic diatom strain (53.6% +/- 12.7%) when settled in the water in which bacteria propagation was controlled by treatment of 2 ppm of benzylpenicillinum calcium and streptomycin sulfate. Postlarvae fed solely on P. helgolandica or the selected benthic diatom Navicula-2005-A grew at rates of 40.1 ( +/- 1.9) and 45.8 (+/- 13.4) mu m day(-1), respectively, when raised at 22 degrees C until day 50 postfertilization. P. helgolandica was shown to have distinct diurnal settling rhythm characterized with a peak of settled cells in the middle of the night for cell division and a peak of free-swimming cells in the middle of the day. High density of attached P. helgolandica cells on the inner surface of the culture facility in the night fits the nocturnal feeding behavior of the abalone spats. Judged by the promising larvae settling rate, growth and survival rates of the postlarvae fed with this alga, the free-swimming micro-green alga P. helgolandica constitutes a potential species for settling the veliger larvae and for supporting the growth of postlarvae as well. (c) 2006 Published by Elsevier B.V.
Resumo:
In order to gain an understanding of the diversity and distribution of antimicrobial-resistant bacteria and their resistance genes in maricultural environments, multidrug-resistant bacteria were screened for the rearing waters from a mariculture farm of China. Both abalone Haliotis discus hannai and turbot Scophthalmus maximus rearing waters were populated with abundant chloramphenicol-resistant bacteria. These bacteria were also multidrug resistant, with Vibrio splendidus and Vibrio tasmaniensis being the most predominant species. The chloramphenicol-resistance gene cat II, cat IV or floR could be detected in most of the multidrug-resistant isolates, and the oxytetracycline-resistance gene tet(B), tet(D), tet(E) or tet(M) could also be detected for most of the isolates. Coexistence of chloramphenicol- and oxytetracycline-resistance genes partially explains the molecular mechanism of multidrug resistance in the studied maricultural environments. Comparative studies with different antimicrobial agents as the starting isolation reagents may help detect a wider diversity of the antimicrobial-resistant bacteria and their resistance genes. (C) 2009 Elsevier Ltd. All rights reserved.