705 resultados para Habitat (Ecology) - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The International Baccalaureate’s branding and reputation targets academic high achievers aiming for university entrance. This is an empirical examination of the growing popularity of this transnational secondary credential amongst local populations in Australia, focusing on its uptake across the community, and the discourses underpinning its spread and popularity. This paper reports on online surveys of 179 parents and 231 students in schools offering the IB as an alternative to Australian state curricula. It sets out to understand the social ecology of who chooses the IB and who it chooses. Statistically significant differences between IB and non-IB choosers were found in terms of family income, parent education, student aspirations, transnational lifestyles, and neoconservative, neoliberal and cosmopolitan beliefs. The analysis demonstrates how the reproduction of advantage is accomplished through choice behaviours in stratified educational markets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Marsupials exhibit great diversity in ecology and morphology. However, compared to their sister group, the placental mammals, our understanding of many aspects of marsupial evolution remains limited. We use 101 mitochondrial genomes and data from 26 nuclear loci to reconstruct a dated phylogeny including 97% of extant genera and 58% of modern marsupial species. This tree allows us to analyze the evolution of habitat preference and geographic distributions of marsupial species through time. We found a pattern of mesic-adapted lineages evolving to use more arid and open habitats, which is broadly consistent with regional climate and environmental change. However, contrary to the general trend, several lineages subsequently appear to have reverted from drier to more mesic habitats. Biogeographic reconstructions suggest that current views on the connectivity between Australia and New Guinea/Wallacea during the Miocene and Pliocene need to be revised. The antiquity of several endemic New Guinean clades strongly suggests a substantially older period of connection stretching back to the Middle Miocene, and implies that New Guinea was colonized by multiple clades almost immediately after its principal formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Camels (Camelus dromedarius) were introduced into Australia from the 1840s to the early 1900s for transport and hauling cargo in arid regions. Feral populations remained small until the 1930s when many were released after they were superseded for transport by trucks and rail. Although camels have a relatively slow population growth (<10% per annum), the population has not reached carrying capacity and therefore, requires control to reduce the increasing impacts on central Australia. The model developed for the Northern Territory suggested that currently there are insufficient numbers being removed. The model also investigated which control options would have greatest impacts and found harvesting to be most important. The extent to which commercial harvesting can feasibly reduce camel populations requires further analysis. Due to the wide dispersal of camels in Australia, fertility control, even if technically feasible, will not target adults, the most important age class of the population. Habitat preferences were also investigated in the model but more validation is required as the population is still under range expansion. Immediate action is suggested to alleviate future costs as camel populations and their impacts rise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Landscape and local-scale influences are important drivers of plant community structure. However, their relative contribution and the degree to which they interact remain unclear. We quantified the extent to which landscape structure, within-patch habitat and their confounding effects determine post-clearing tree densities and composition in agricultural landscapes in eastern subtropical Australia. Landscape structure (incorporating habitat fragmentation and loss) and within-patch (site) features were quantified for 60 remnant patches of Eucalyptus populnea (Myrtaceae) woodland. Tree density and species for three ecological maturity classes (regeneration, early maturity, late maturity) and local site features were assessed in one 100 × 10 m plot per patch. All but one landscape characteristic was determined within a 1.3-km radius of plots; Euclidean nearest neighbour distance was measured inside a 5-km radius. Variation in tree density and composition for each maturity class was partitioned into independent landscape, independent site and joint effects of landscape and site features using redundancy analysis. Independent site effects explained more variation in regeneration density and composition than pure landscape effects; significant predictors were the proportion of early and late maturity trees at a site, rainfall and the associated interaction. Conversely, landscape structure explained greater variation in early and late maturity tree density and composition than site predictors. Area of remnant native vegetation within a landscape and patch characteristics (area, shape, edge contrast) were significant predictors of early maturity tree density. However, 31% of the explained variation in early mature tree differences represented confounding influences of landscape and local variables. We suggest that within-patch characteristics are important in influencing semi-arid woodland tree regeneration. However, independent and confounding effects of landscape structure resulting from previous vegetation clearing may have exerted a greater historical influence on older cohorts and should be accounted for when examining woodland dynamics across a broader range of environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. The successful introduction of the red fox Vulpes vulpes into Australia in the 1870s has had dramatic and deleterious impacts on both native fauna and agricultural production. Historical accounts detail how the arrival of foxes in many areas coincided with the local demise of native fauna. Recent analyses suggest that native fauna can be successfully reintroduced to their former ranges only if foxes have been controlled, and several replicated removal experiments have confirmed that foxes are the major agents of extirpation of native fauna. Predation is the primary cause of losses, but competition and transmission of disease may be important for some species. 2. In agricultural landscapes, fox predation on lambs can cause losses of 1–30%; variation is due to flock size, health and management, as well as differences in the timing and duration of lambing and the density of foxes. 3. Fox control measures include trapping, shooting, den fumigation and exclusion fencing; baiting using the toxin 1080 is the most commonly employed method. Depending on the baiting strategy, habitat and area covered, baiting can reduce fox activity by 50–97%. We review patterns of baiting in a large sheep-grazing region in central New South Wales, and propose guidelines to increase landholder awareness of baiting strategies, to concentrate and coordinate bait use, and to maximize the cost-effectiveness of baiting programs. 4. The variable reduction in fox density within the baited area, together with the ability of the fox to recolonize rapidly, suggest that current baiting practices in eastern Australia are often ineffective, and that reforms are required. These might include increasing landholder awareness and involvement in group control programs, and the use of more efficient broadscale techniques, such as aerial baiting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is growing interest in the role that apex predators play in shaping terrestrial ecosystems and maintaining trophic cascades. In line with the mesopredator release hypothesis, Australian dingoes (Canis lupus dingo and hybrids) are assumed by many to regulate the abundance of invasive mesopredators, such as red foxes Vulpes vulpes and feral cats Felis catus, thereby providing indirect benefits to various threatened vertebrates. Several recent papers have claimed to provide evidence for the biodiversity benefits of dingoes in this way. Nevertheless, in this paper we highlight several critical weaknesses in the methodological approaches used in many of these reports, including lack of consideration for seasonal and habitat differences in activity, the complication of simple track-based indices by incorporating difficult-to-meet assumptions, and a reduction in sensitivity for assessing populations by using binary measures rather than potentially continuous measures. Of the 20 studies reviewed, 15 of them (75%) contained serious methodological flaws, which may partly explain the inconclusive nature of the literature nvestigating interactions between invasive Australian predators. We therefore assert that most of the “growing body of evidence” for mesopredator release is merely an inconclusive growing body of literature only. We encourage those interested in studying the ecological roles of dingoes relative to invasive mesopredators and native prey species to account for the factors we identify, and caution the value of studies that have not done so.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We used an established seagrass monitoring programme to examine the short and longer-term impacts of an oil spill event on intertidal seagrass meadows. Results for potentially impacted seagrass areas were compared with existing monitoring data and with control seagrass meadows located outside of the oil spill area. Seagrass meadows were not significantly affected by the oil spill. Declines in seagrass biomass and area 1 month post-spill were consistent between control and impact meadows. Eight months post-spill, seagrass density and area increased to be within historical ranges. The declines in seagrass meadows were likely attributable to natural seasonal variation and a combination of climatic and anthropogenic impacts. The lack of impact from the oil spill was due to several mitigating factors rather than a lack of toxic effects to seagrasses. The study demonstrates the value of long-term monitoring of critical habitats in high risk areas to effectively assess impacts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ants are the dominant soil faunal group in many if not most terrestrial ecosystems, and play a key role in soil structure and function. This study documents the impacts of invasion by the exotic cat’s claw creeper vine, Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) on surface-situated (epigaeic) and subterranean (hypogaeic) ant communities in subtropical SE Queensland Australia where it is a major environmental weed of riparian areas, rainforest communities and remnant natural vegetation, smothering standing vegetation and causing canopy collapse. Soil ants were sampled in infested and uninfested areas at eight sites spanning both riparian and non-riparian habitats in subtropical SE Queensland. Patterns of ant species composition and functional grouping in response to patch invasion status, landscape type and habitat stratum were investigated using ANOVA and non-metric multidimensional scaling ordination. The epigaeic and subterranean strata supported markedly different ant assemblages, and ant communities also differed between riparian and non-riparian habitats. However, M. unguis-cati invasion had a surprisingly limited impact. There was a tendency for ant abundance and species richness to be lower in infested patches, and overall species composition was different between infested and uninfested patches, but these differences were relatively small, and did not occur consistently across sites. There were changes in functional group composition that conformed to known functional group responses to environmental change, but these were similarly limited and inconsistent across sites. Our study has shown that ant communities are surprisingly resilient to invasion by M. unguis-cati, and serves as a warning against making assumptions about invasion impacts based on visual appearances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Precaudal vertebral counts were used to distinguish between 237 morphologically similar Carcharhinus limbatus and Carcharhinus tilstoni and were congruent with differences in reproductive ecology between the species. In addition to differing lengths at maturity and adult body size, the two species had asynchronous parturition, were born at different sizes and the relative frequencies of neonates differed in two coastal nursery areas. Despite evidence that hybridization can occur, these differences suggest the species are largely reproductively isolated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oreochromis mossambicus (Peters 1852) are native to the eastward flowing rivers of central and southern Africa but from the early 1930s they have been widely distributed around the world for aquaculture and for biological control of weeds and insects. While O. mossambicus are now not commonly used as an aquaculture species, the biological traits that made them a popular culture species including tolerance to wide ranging ecological conditions, generalist dietary requirements and rapid reproduction with maternal care have also made them a 'model' invader. Self-sustaining populations now exist in almost every region to which they have been imported. In Australia, since their introduction in the 1970s, O. mossambicus have become established in catchments along the east and west coasts and have the potential to colonise other adjacent drainages. It is thought that intentional translocations are likely to be the most significant factor in their spread in Australia. The ecological and physical tolerances and preferences, reproductive behaviour, hybridization and the high degree of plasticity in the life history traits of O. mossambicus are reviewed. Impacts of O. mossambicus on natural ecosystems including competitive displacement of native species, habitat alteration, predation and as a vector in the spread of diseases are discussed. Potential methods for eradicating or controlling invasive populations of O. mossambicus including physical removal, piscicides, screens, environmental management and genetic technologies are outlined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Predicting which species are likely to cause serious impacts in the future is crucial for targeting management efforts, but the characteristics of such species remain largely unconfirmed. We use data and expert opinion on tropical and subtropical grasses naturalised in Australia since European settlement to identify naturalised and high-impact species and subsequently to test whether high-impact species are predictable. High-impact species for the three main affected sectors (environment, pastoral and agriculture) were determined by assessing evidence against pre-defined criteria. Twenty-one of the 155 naturalised species (14%) were classified as high-impact, including four that affected more than one sector. High-impact species were more likely to have faster spread rates (regions invaded per decade) and to be semi-aquatic. Spread rate was best explained by whether species had been actively spread (as pasture), and time since naturalisation, but may not be explanatory as it was tightly correlated with range size and incidence rate. Giving more weight to minimising the chance of overlooking high-impact species, a priority for biosecurity, meant a wider range of predictors was required to identify high-impact species, and the predictive power of the models was reduced. By-sector analysis of predictors of high impact species was limited by their relative rarity, but showed sector differences, including to the universal predictors (spread rate and habitat) and life history. Furthermore, species causing high impact to agriculture have changed in the past 10 years with changes in farming practice, highlighting the importance of context in determining impact. A rationale for invasion ecology is to improve the prediction and response to future threats. Although our study identifies some universal predictors, it suggests improved prediction will require a far greater emphasis on impact rather than invasiveness, and will need to account for the individual circumstances of affected sectors and the relative rarity of high-impact species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A significantly increased water regime can lead to inundation of rivers, creeks and surrounding floodplains- and thus impact on the temporal dynamics of both the extant vegetation and the dormant, but viable soil-seed bank of riparian corridors. The study documented changes in the soil seed-bank along riparian corridors before and after a major flood event in January 2011 in southeast Queensland, Australia. The study site was a major river (the Mooleyember creek) near Roma, Central Queensland impacted by the extreme flood event and where baseline ecological data on riparian seed-bank populations have previously been collected in 2007, 2008 and 2009. After the major flood event, we collected further soil samples from the same locations in spring/summer (November–December 2011) and in early autumn (March 2012). Thereafter, the soils were exposed to adequate warmth and moisture under glasshouse conditions, and emerged seedlings identified taxonomically. Flooding increased seed-bank abundance but decreased its species richness and diversity. However, flood impact was less than that of yearly effect but greater than that of seasonal variation. Seeds of trees and shrubs were few in the soil, and were negatively affected by the flood; those of herbaceous and graminoids were numerous and proliferate after the flood. Seed-banks of weedy and/or exotic species were no more affected by the flood than those of native and/or non-invasive species. Overall, the studied riparian zone showed evidence of a quick recovery of its seed-bank over time, and can be considered to be resilient to an extreme flood event.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cabomba caroliniana is a submersed aquatic macrophyte that originates from the Americas and is currently invading temperate, subtropical, and tropical freshwater habitats around the world. Despite being a nuisance in many countries, little is known about its ecology. We monitored C. caroliniana populations in three reservoirs in subtropical Queensland, Australia, over 5.5 years. Although biomass, stem length, and plant density of the C. caroliniana stands fluctuated over time, they did not exhibit clear seasonal patterns. Water depth was the most important environmental factor explaining C. caroliniana abundance. Plant biomass was greatest at depths from 2–4 m and rooted plants were not found beyond 5 m. Plant density was greatest in shallow water and decreased with depth, most likely as a function of decreasing light and increasing physical stress. We tested the effect of a range of water physico-chemical parameters. The concentration of phosphorus in the water column was the variable that explained most of the variation in C. caroliniana population parameters. We found that in subtropical Australia, C. caroliniana abundance does not appear to be affected by seasonal conditions but is influenced by other environmental variables such as water depth and nutrient loading. Therefore, further spread will more likely be governed by local habitat rather than climatic conditions.