994 resultados para HYDROGEN PHOSPHATE
Resumo:
The surface sediments in the Black Sea are underlain by extensive deposits of iron (Fe) oxide-rich lake sediments that were deposited prior to the inflow of marine Mediterranean Sea waters ca. 9000 years ago. The subsequent downward diffusion of marine sulfate into the methane-bearing lake sediments has led to a multitude of diagenetic reactions in the sulfate-methane transition zone (SMTZ), including anaerobic oxidation of methane (AOM) with sulfate. While the sedimentary cycles of sulfur (S), methane and Fe in the SMTZ have been extensively studied, relatively little is known about the diagenetic alterations of the sediment record occurring below the SMTZ. Here we combine detailed geochemical analyses of the sediment and pore water with multicomponent diagenetic modeling to study the diagenetic alterations below the SMTZ at two sites in the western Black Sea. We focus on the dynamics of Fe, S and phosphorus (P) and demonstrate that diagenesis has strongly overprinted the sedimentary burial records of these elements. Our results show that sulfate-mediated AOM substantially enhances the downward diffusive flux of sulfide into the deep limnic deposits. During this downward sulfidization, Fe oxides, Fe carbonates and Fe phosphates (e.g. vivianite) are converted to sulfide phases, leading to an enrichment in solid phase S and the release of phosphate to the pore water. Below the sulfidization front, high concentrations of dissolved ferrous Fe (Fe2+) lead to sequestration of downward diffusing phosphate as authigenic vivianite, resulting in a transient accumulation of total P directly below the sulfidization front. Our model results further demonstrate that downward migrating sulfide becomes partly re-oxidized to sulfate due to reactions with oxidized Fe minerals, fueling a cryptic S cycle and thus stimulating slow rates of sulfate-driven AOM (~ 1-100 pmol/cm**3/d) in the sulfate-depleted limnic deposits. However, this process is unlikely to explain the observed release of dissolved Fe2+ below the SMTZ. Instead, we suggest that besides organoclastic Fe oxide reduction, AOM coupled to the reduction of Fe oxides may also provide a possible mechanism for the high concentrations of Fe2+ in the pore water at depth. Our results reveal that methane plays a key role in the diagenetic alterations of Fe, S and P records in Black Sea sediments. The downward sulfidization into the limnic deposits is enhanced through sulfate-driven AOM with sulfate and AOM with Fe oxides may provide a deep source of dissolved Fe2+ that drives the sequestration of P in vivianite below the sulfidization front.
Resumo:
Studies of authigenic phosphorus (P) minerals in marine sediments typically focus on authigenic carbonate fluorapatite, which is considered to be the major sink for P in marine sediments and can easily be semi-quantitatively extracted with the SEDEX sequential extraction method. The role of other potentially important authigenic P phases, such as the reduced iron (Fe) phosphate mineral vivianite (Fe(II)3(PO4)*8H2O) has so far largely been ignored in marine systems. This is, in part, likely due to the fact that the SEDEX method does not distinguish between vivianite and P associated with Fe-oxides. Here, we show that vivianite can be quantified in marine sediments by combining the SEDEX method with microscopic and spectroscopic techniques such as micro X-ray fluorescence (µXRF) elemental mapping of resin-embedded sediments, as well as scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) and powder X-ray diffraction (XRD). We further demonstrate that resin embedding of vertically intact sediment sub-cores enables the use of synchrotron-based microanalysis (X-ray absorption near-edge structure (XANES) spectroscopy) to differentiate between different P burial phases in aquatic sediments. Our results reveal that vivianite represents a major burial sink for P below a shallow sulfate/methane transition zone in Bothnian Sea sediments, accounting for 40-50% of total P burial. We further show that anaerobic oxidation of methane (AOM) drives a sink-switching from Fe-oxide bound P to vivianite by driving the release of both phosphate (AOM with sulfate and Fe-oxides) and ferrous Fe (AOM with Fe-oxides) to the pore water allowing supersaturation with respect to vivianite to be reached. The vivianite in the sediment contains significant amounts of manganese (~4-8 wt.%), similar to vivianite obtained from freshwater sediments. Our results indicate that methane dynamics play a key role in providing conditions that allow for vivianite authigenesis in coastal surface sediments. We suggest that vivianite may act as an important burial sink for P in brackish coastal environments worldwide.
Resumo:
Este trabalho teve como objectivo, o desenvolvimento de um método electroquímico, para quantificação do fármaco carbamazepina (CBZ) em águas contaminadas. Neste trabalho foram utilizados quatro métodos voltamétricos: a voltametria cíclica, a voltametria de varrimento linear, a voltametria de onda quadrada e a voltametria de impulso diferencial. Os eléctrodos de trabalho utilizados foram, o eléctrodo de mercúrio de gota suspensa, o eléctrodo de carbono vítreo clássico e um eléctrodo de carbono vítreo modificado com um filme de nanotubos de carbono de paredes múltiplas (MWCNTs). O eléctrodo de mercúrio de gota suspensa permitiu o estudo da redução da CBZ numa região de potencial mais catódico, e os eléctrodos de carbono vítreo, com e sem modificação, permitiram o estudo da oxidação da CBZ numa região de potencial mais anódico. Nas condições experimentais estudadas, o eléctrodo de mercúrio de gota suspensa revelou ser um sensor voltamétrico pouco eficaz na determinação quantitativa da carbamazepina, em amostras com uma matriz complexa. Entre os eléctrodos de carbono vítreo, o eléctrodo de carbono vítreo modificado com os MWCNTs revelou ser o sensor voltamétrico mais eficaz e sensível, na detecção e determinação da carbamazepina. Modificado com um filme de nanotubos de carbono de paredes múltiplas, que previamente foram dispersos em dihexadecilhidrogenofosfato (DHP) e água, este novo eléctrodo permitiu obter uma resposta electroquímica da CBZ, consideravelmente superior ao eléctrodo não modificado. Utilizando a voltametria de varrimento linear e as condições experimentais consideradas óptimas, o eléctrodo nanoestruturado permitiu obter uma relação linear entre o sinal medido e a concentração da CBZ no intervalo 0.13- 1.60 M (30.7- 378 g -1), com os limites de detecção e quantificação mais baixos, até à data reportados com métodos electroquímicos (0.04 e 0.14M, respectivamente). O eléctrodo modificado foi aplicado na quantificação da CBZ, em formulações farmacêuticas, em águas naturais tratadas e em amostras de águas residuais, ambas dopadas, obtendo-se taxas de recuperação consideravelmente elevadas (100.6%, 98.0%,95.8%, respectivamente). Os resultados obtidos, na análise da CBZ em amostras ambientais, com o eléctrodo modificado, foram comparados com resultados obtidos por HPLC-UV e LC ESI-MS/MS, validando o método electroquímico desenvolvido neste trabalho. ABSTRACT: The aim of this work was to develop a new electrochemical method for the quantification of carbamazepine (CBZ) in contaminated waters. ln this study, four voltammetric methods were used: cyclic voltammetry, linear sweep voltammetry, square wave voltammetry and differential pulse voltammetry. the working electrodes used were the hanging mercury drop electrode (HMDE), the classical glassy carbon electrode (GCE), and a glassy carbon electrode modified with a film of multi-walled carbon nanotubes (MWCNls). Using HMDE, the reduction of CBZ was studied in the cathodic potential region. the CGE sensors, with or without modification, allowed the study of CBZ oxidation in the anodic potential region. ln the tested conditions, the results obtained for the quantification of CBZ using the HMDE sensor were not very satisfactory, especially when more complex samples were analysed. When the MWCNls-dihexadecyl hydrogen phosphate (DHP) film coated GCE was used for the voltammetric determination of CBZ, the results obtained showed that this modified electrode exhibits excellent enhancement effects on the electrochemical oxidation of CBZ. the oxidation peak current of CBZ at this film modified electrode increased significantly, when compared with that at a bare glassy carbon electrode. The enhanced electrooxidation and voltammetry of CBZ at the surface of MWCNTs-DHP film coated GCE in phosphate buffer solution (pH 6.71) was attributed to the unique properties of MWCNTs such as large specific surface area and strong adsorptive properties providing more reaction sites. The proposed method was applied to the quantification of CBZ in pharmaceutical formulations, drinking water and wastewater samples with good recoveries and low limits of detection and quantification (0.04 and 0.14 M, respectively), and was positively compared with chromatographic techniques usually used in the quantification of pharmaceutical compounds in environmental samples. HPLC-UV and LC-ESI-MS/MS were also used in the quantification of CBZ in pharmaceutical formulations and wastewater samples to prove the importance and accuracy of his voltammetric method.
Resumo:
The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12000-7600 cm-1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm-1. A broad spectral feature observed for ferrous ion in the 12000-9000 cm-1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm-1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm-1 region resulting from the combinations of vibrational modes of (PO4)3- units.
Resumo:
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the reaction between shikimate 3-phosphate and phosphoenolpyruvate to form 5-enolpyruvylshikimate 3-phosphate, an intermediate in the shikimate pathway, which leads to the biosynthesis of aromatic amino acids. EPSPS exists in an open conformation in the absence of substrates and/or inhibitors and in a closed conformation when bound to the substrate and/or inhibitor. In the present report, the H/D exchange properties of EPSPS from Mycobacterium tuberculosis (Mt) were investigated for both enzyme conformations using ESI mass spectrometry and circular dichroism (CD). When the conformational changes identified by H/D exchanges were mapped on the 3-D structure, it was observed that the apoenzyme underwent extensive conformational changes due to glyphosate complexation, characterized by an increase in the content of alpha-helices from 40% to 57%, while the beta-sheet content decreased from 30% to 23%. These results indicate that the enzyme underwent a series of rearrangements of its secondary structure that were accompanied by a large decrease in solvent access to many different regions of the protein. This was attributed to the compaction of 71% of alpha-helices and 57% of beta-sheets as a consequence of glyphosate binding to the enzyme. Apparently, MtEPSPS undergoes a series of inhibitor-induced conformational changes, which seem to have caused synergistic effects in preventing solvent access to the core of molecule, especially in the cleft region. This may be part of the mechanism of inhibition of the enzyme, which is required to prevent the hydration of the substrate binding site and also to induce the cleft closure to avoid entrance of the substrates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Raman spectroscopy has been used to study the rare earth mineral churchite-(Y) of formula (Y,REE)(PO4) •2H2O. The mineral contains yttrium and depending on the locality, a range of rare earth metals. The Raman spectra of two churchite-(Y) mineral samples from Jáchymov and Medvědín in the Czech Republic were compared with the Raman spectra of churchite-(Y) downloaded from the RRUFF data base. The Raman spectra of churchite-(Y) are characterized by an intense sharp band at 975 cm-1 assigned to the ν1 (PO4)3- symmetric stretching mode. A lower intensity band observed at around 1065 cm-1 is attributed to the ν3 (PO43-) antisymmetric stretching mode. The (PO43-) bending modes are observed at 497 cm-1 (ν2) and 563 cm-1(ν4). Some small differences in the band positions between the four churchite-(Y) samples from four different localities were found. These differences are possible to explain as different compositions of the churchite-(Y) minerals.
Resumo:
Plumbogummite PbAl3(PO4)2(OH,H2O)6 is a mineral of environmental significance and is a member of the alunite-jarosite supergroup. The molecular structure of the mineral has been investigated by Raman spectroscopy. The spectra of different plumbogummite specimens differ although there are many common features. The Raman spectra prove the spectral profile consisting of overlapping bands and shoulders. Raman bands and shoulders observed at 971, 980, 1002 and 1023 cm−1 (China sample) and 913, 981, 996 and 1026 cm−1 (Czech sample) are assigned to the ν1 symmetric stretching modes of the (PO4)3−, at 1002 and 1023 cm−1 (China) and 996 and 1026 cm−1 to the ν1 symmetric stretching vibrations of the (O3POH)2− units, and those at 1057, 1106 and 1182 (China) and at 1102, 1104 and 1179 cm−1 (Czech) to the ν3 (PO4)3− and ν3 (PO3) antisymmetric stretching vibrations. Raman bands and shoulders at 634, 613 and 579 cm−1 (China) and 611 and 596 cm−1 (Czech) are attributed to the ν4 (δ) (PO4)3− bending vibrations and those at 507, 494 and 464 cm−1 (China) and 505 and 464 cm−1 (Czech) to the ν2 (δ) (PO4)3− bending vibrations. The Raman spectrum of the OH stretching region is complex. Raman bands and shoulders are identified at 2824, 3121, 3249, 3372, 3479 and 3602 cm−1 for plumbogummite from China, and at 3077, 3227, 3362, 3480, 3518 and 3601 cm−1 for the Czech Republic sample. These bands are assigned to the ν OH stretching modes of water molecules and hydrogen ions. Approximate O–H⋯O hydrogen bond lengths inferred from the Raman spectra vary in the range >3.2–2.62 Å (China) and >3.2–2.67 Å (Czech). The minority presence of some carbonate ions in the plumbogummite (China sample) is connected with distinctive intensity increasing of the Raman band at 1106 cm−1, in which may participate the ν1 (CO3)2− symmetric stretching vibration overlapped with phosphate stretching vibrations.
Resumo:
The objective of this work is to analyze ludlamite (Fe,Mn,Mg)3(PO4)2⋅4H2O from Boa Vista mine, Galiléia, Brazil and to assess the molecular structure of the mineral. The phosphate mineral ludlamite has been characterized by EMP-WDS, Raman and infrared spectroscopic measurements. The mineral is shown to be a ferrous phosphate with some minor substitution of Mg and Mn. Raman bands at 917 and 950 cm−1 are assigned to the symmetric stretching mode of and units. Raman bands at 548, 564, 599 and 634 cm−1 are assigned to the ν4 bending modes. Raman bands at 2605, 2730, 2896 and 3190 cm−1 and infrared bands at 2623, 2838, 3136 and 3185 cm−1 are attributed to water stretching vibrations. By using a Libowitzky empirical function, hydrogen bond distances are calculated from the OH stretching wavenumbers. Strong hydrogen bonds in the structure of ludlamite are observed as determined by their hydrogen bond distances. The application of infrared and Raman spectroscopy to the study of ludlamite enables the molecular structure of the pegmatite mineral ludlamite to be assessed.
Resumo:
We have characterized anapaite Ca2Fe2+(PO4)2·4(H2O), a rare Ca and Fe phosphate, using a combination of electron microscopy and vibrational spectroscopy. The mineral occurs in soils and lacustrine sediments and is usually related to the diagenetic process in phosphorous rich sediments. The phosphate anion is characterized by its Raman spectrum with an intense sharp band at 943 cm-1, attributed to the ν1 PO4 3- symmetric stretching mode. Three bands at 992, 1039 and 1071 cm-1 are attributed to ν3 PO4 3-antisymmetric stretching modes. The infrared spectrum of anapaite shows complexity with a series of overlapping bands. Water in the structure of anapaite is observed by OH stretching vibrations at 2777, 3022 and 3176 cm-1 (Raman) and 2744, 3014 and 3096 cm-1 (infrared). The position of these bands provides evidence for the strong hydrogen bonding of water in the anapaite structure and contributes to the stability of the mineral.
Resumo:
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.