621 resultados para HOMODIMERIC LECTIN
Resumo:
Autoantibodies against complement C1q (anti-C1q) strongly correlate with the occurrence of lupus nephritis and hypocomplementemia in systemic lupus erythematosus (SLE). Although a direct pathogenic role of anti-C1q has been suggested, the assumed complement-activating capacity remains to be elucidated. Using an ELISA-based assay, we found that anti-C1q activate the classical (CP) and lectin pathways (LP) depending on the anti-C1q immunoglobulin-class repertoire present in the patient's serum. IgG anti-C1q resulted in the activation of the CP as reflected by C4b deposition in the presence of purified C1 and C4 in a dose-dependent manner. The extent of C4b deposition correlated with anti-C1q levels in SLE patients but not in healthy controls. Our data indicate that SLE patient-derived anti-C1q can activate the CP and the LP but not the alternative pathway of complement. These findings are of importance for the understanding of the role of anti-C1q in SLE suggesting a direct link to hypocomplementemia.
Resumo:
The complement system is a major effector of innate immunity that has been involved in stroke brain damage. Complement activation occurs through the classical, alternative and lectin pathways. The latter is initiated by mannose-binding lectin (MBL) and MBL-associated serine proteases (MASPs). Here we investigated whether the lectin pathway contributes to stroke outcome in mice and humans.
Resumo:
The composition and distribution of the glycoconjugates (GCs) secreted by the epithelium of ovarian lamellae with reference to the reproductive biology of Genypterus blacodes (Schneider, 1801) through lectin hi stochemistry is here discussed. In this species, the epithelial cells that line the ovarian cavity presented sharp morphological variations along the reproductive cycle related to the mucus secretion that accompanies oocyte ma turation. During sp awning season, residues of mannose and N-acetylglucosamine were detected in the glycocalyx of those cells using lectinhistochemistry. N- acetylgalactosamine and fucose were also observed in the same zone. The greatest variations in the lectinhistochemical pattern were found in the apical cytoplasm composition in comparison to the basal zone of the cells. The results of the present study were discussed by comparing their possible functional implications.
Resumo:
A lectin present in the marine red alga Pterocladiella capillacea was purified and characterised by extraction of soluble proteins (crude extract) in 20 mM Tris-HCl buffer, pH 7.5. Among the analysed erythrocytes (human blood group A, B and O and the animals ox, goat, chicken and rabbit) the lectin agglutinated specifically rabbit erythrocytes. The hemagglutinating activity assay showed that the lectin was not dependent on divalent cations and was shown to be inhibited by the glycoproteins avidin and mucin. The purification procedure was conduced by precipitation of the crude extract with 80% saturation ammonium sulfate (F0/80) followed by affinity chromatography on guar-gum column. The lectin of P. capillacea was purified 14.5 fold and had a recovery of 27.4% of the original total specific activity present in the crude extract. The absence of carbohydrate suggested that the lectin is not a glycoprotein. The molecular mass of P. capillacea lectin, determined by gel filtration, was 5.8 kDa. SDS-PAGE in the presence of ß-mercaptoethanol gave one band, indicating that the native lectin is a monomeric protein. The activation energy of denaturation process (D G') was calculated to be 106.87 kJ . mol-1 at 70 ºC.
Resumo:
A lectin from cat liver has been identified and purified by affinity chromatography on asialofetuin-Sepharose. One hundred micrograms of lectin was obtained from one cat liver with a purification factor of 1561. The lectin agglutinates trypsin-treated rabbit and cow erythrocytes. Hemagglutination was inhibited only by saccharides containing ß-galactosyl residues, of which the 1-amine-1-deoxy-ß-D-galactose was the most potent one by inhibiting hemagglutination at a concentration of 12.5 mM, followed by melibiose, trehalose and galactose. The lectin has a subunit molecular mass of 14.4 kDa determined by SDS-PAGE under reducing conditions and a pI of 4.85. Compared with the composition of lectins from calf heart and porcine heart, cat liver lectin contains approximately the same amount of cysteine, half the amount of glycine, twice as much arginine and threonine, and three times the amounts of tyrosine and methionine. Cat liver lectin contains four cysteine residues per subunit, all of them in the reduced form. Their lack of reactivity towards thiol-reactive supports suggests they are not exposed on the lectin surface. The protein apparently has a blocked N-terminus. The purified lectin was stable for up to 20 months stored at +4ºC in buffer supplemented with 4 mM ß-mercaptoethanol. Results indicated that this lectin belongs to the family of soluble ß-galactoside-binding lectins, also known as galectins, which are expressed in a wide range of vertebrate tissues.
Resumo:
A lectin isolated from the red alga Solieria filiformis was evaluated for its effect on the growth of 8 gram-negative and 3 gram-positive bacteria cultivated in liquid medium (three independent experiments/bacterium). The lectin (500 µg/mL) stimulated the growth of the gram-positive species Bacillus cereus and inhibited the growth of the gram-negative species Serratia marcescens, Salmonella typhi, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus sp, and Pseudomonas aeruginosa at 1000 µg/mL but the lectin (10-1000 µg/mL) had no effect on the growth of the gram-positive bacteria Staphylococcus aureus and B. subtilis, or on the gram-negative bacteria Escherichia coli and Salmonella typhimurium. The purified lectin significantly reduced the cell density of gram-negative bacteria, although no changes in growth phases (log, exponential and of decline) were observed. It is possible that the interaction of S. filiformis lectin with the cell surface receptors of gram-negative bacteria promotes alterations in the flow of nutrients, which would explain the bacteriostatic effect. Growth stimulation of the gram-positive bacterium B. cereus was more marked in the presence of the lectin at a concentration of 1000 µg/mL. The stimulation of the growth of B. cereus was not observed when the lectin was previously incubated with mannan (125 µg/mL), its hapten. Thus, we suggest the involvement of the binding site of the lectin in this effect. The present study reports the first data on the inhibition and stimulation of pathogenic bacterial cells by marine alga lectins.
Resumo:
The antinociceptive effects of a lectin (LEC) isolated from the marine alga Amansia multifida were determined in Swiss mice. The LEC (1, 5, and 10 mg/kg) inhibited acetic acid-induced abdominal writhings in a dose-dependent manner after intraperitoneal or oral administration. A partial but significant inhibition of writhings was observed after the combination of LEC (10 mg/kg) with avidin (1 mg/kg), a potent inhibitor of the hemmaglutinant activity of the lectin. However, total writhing inhibition was demonstrable in the group of mice treated with LEC plus mannose (1 mg/kg), as compared to LEC alone or to control groups. Furthermore, avidin and mainly mannose also play a role in antinociception, somehow facilitating the interaction of LEC with its active cell sites. In the formalin test, although both phases of the response were significantly inhibited, the effect of LEC was predominant during phase 2, causing inhibition of licking time that ranged from 48 to 88% after oral (5 and 10 mg/kg) and intraperitoneal (1 to 5 mg/kg) administration. As is the case with morphine, the effect of LEC (2 mg/kg) was reversed by naloxone (2 mg/kg), indicating the involvement of the opioid system. LEC was also effective in the hot-plate test, producing inhibitory responses to the thermal stimulus, and its effects were blocked by naloxone. In the pentobarbital-induced sleeping time, although LEC did not alter the onset of sleep significantly, it increased the time of sleep within the same dose range compared to control. These results show that LEC presents antinociceptive effects of both central and peripheral origin, possibly involving the participation of the opioid system.
Resumo:
The clinical heterogeneity observed in leptospirosis may be associated with host factors or bacteria virulence. Human serum mannose-binding lectin (MBL) recognizes many pathogens, and low levels of this lectin are associated with susceptibility to infection. MBL is also implicated in the modulation of the inflammatory process. We determined the levels of serum MBL during leptospirosis infection. A double-antibody sandwich ELISA was used to detect the immunoreactive serum MBL. The ELISA plates were coated with monoclonal antibody to MBL and bound MBL or recombinant human MBL were detected by rabbit anti-human MBL serum. HRPO-conjugated goat anti-rabbit antibody was used for detection of the reaction. Two groups of patients seen at referral hospitals in Recife, PE, Brazil, were divided according to the year of infection, 2001 (N = 61) or 2002 (N = 57) and compared in terms of disease severity and levels of serum MBL. A group of healthy volunteers (N = 97) matched by age, gender, and ethnic background was used as control. Patients infected in 2001 had more severe outcomes than those infected in 2002, including jaundice, hemorrhage, respiratory alteration, and renal complication (P = 0.0009; chi-square test). The frequency of patients producing serum MBL >1000 ng/mL was higher in the 2001 group than in the 2002 and control groups (P < 0.01), suggesting an association of MBL level with disease severity. The involvement of MBL and genetic variation of the MBL2 gene should be further evaluated to establish the role of this lectin in the pathogenesis of leptospirosis.
Resumo:
Abstract A novel lectin was isolated from the seeds of Chenopodium quinoa. To achieve this end, the crude extract from the quinoa was submitted to two purification steps, Sephadex G50 and Mono Q. The hemagglutinating activity showed that this lectin agglutinates human erythrocytes. Its activity is inhibited by glucose and mannose, and remained stable under a wide range of pH levels and temperatures. The quinoa lectin was found to be a heterodimeric lectin of approximately 60 kDa, consisting of two subunits of approximately 25 kDa and 35 kDa. This lectin had its antimicrobial activity tested against several bacteria strains and effectively inhibited three strains. These strains were all Gram-negative, making this lectin a promising antimicrobial tool.
Resumo:
Platelets are activated by a range of stimuli that share little or no resemblance in structure to each other or to recognized ligands, including diesel exhaust particles (DEP), small peptides [4N1-1, Champs (computed helical anti-membrane proteins), LSARLAF (Leu-Ser-Ala-Arg-Leu-Ala-Phe)], proteins (histones) and large polysaccharides (fucoidan, dextran sulfate). This miscellaneous group stimulate aggregation of human and mouse platelets through the glycoprotein VI (GPVI)-FcR γ-chain complex and/or C-type lectin-like receptor-2 (CLEC-2) as shown using platelets from mice deficient in either or both of these receptors. In addition, all of these ligands stimulate tyrosine phosphorylation in GPVI/CLEC-2-double-deficient platelets, indicating that they bind to additional surface receptors, although only in the case of dextran sulfate does this lead to activation. DEP, fucoidan and dextran sulfate, but not the other agonists, activate GPVI and CLEC-2 in transfected cell lines as shown using a sensitive reporter assay confirming a direct interaction with the two receptors. We conclude that this miscellaneous group of ligands bind to multiple proteins on the cell surface including GPVI and/or CLEC-2, inducing activation. These results have pathophysiological significance in a variety of conditions that involve exposure to activating charged/hydrophobic agents.
Resumo:
The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development.
Resumo:
Fucoidan, a sulfated polysaccharide from Fucus vesiculosus, decreases bleeding time and clotting time in hemophilia, possibly through inhibition of tissue factor pathway inhibitor. However, its effect on platelets and the receptor by which fucoidan induces cellular processes has not been elucidated. In this study, we demonstrate that fucoidan induces platelet activation in a concentration-dependent manner. Fucoidan-induced platelet activation was completely abolished by the pan-Src family kinase (SFK) inhibitor, PP2, or when Syk is inhibited. PP2 abolished phosphorylations of Syk and Phospholipase C-γ2. Fucoidan-induced platelet activation had a lag phase, which is reminiscent of platelet activation by collagen and CLEC-2 receptor agonists. Platelet activation by fucoidan was only slightly inhibited in FcRγ-chain null mice, indicating that fucoidan was not acting primarily through GPVI receptor. On the other hand, fucoidan-induced platelet activation was inhibited in platelet-specific CLEC-2 knock-out murine platelets revealing CLEC-2 as a physiological target of fucoidan. Thus, our data show fucoidan as a novel CLEC-2 receptor agonist that activates platelets through a SFK-dependent signaling pathway. Furthermore, the efficacy of fucoidan in hemophilia raises the possibility that decreased bleeding times could be achieved through activation of platelets.
Resumo:
CLEC-2 is a member of new family of C-type lectin receptors characterized by a cytosolic YXXL downstream of three acidic amino acids in a sequence known as a hemITAM (hemi-immunoreceptor tyrosine-based activation motif). Dimerization of two phosphorylated CLEC-2 molecules leads to recruitment of the tyrosine kinase Syk via its tandem SH2 domains and initiation of a downstream signaling cascade. Using Syk-deficient and Zap-70-deficient cell lines we show that hemITAM signaling is restricted to Syk and that the upstream triacidic amino acid sequence is required for signaling. Using surface plasmon resonance and phosphorylation studies, we demonstrate that the triacidic amino acids are required for phosphorylation of the YXXL. These results further emphasize the distinct nature of the proximal events in signaling by hemITAM relative to ITAM receptors.
Resumo:
This study reports the in vivo stimulatory effects of Cramoll 1,4 on rat spleen lymphocytes as evidenced by an increase in intracellular reactive oxygen species (ROS) production, Ca(2+) levels, and interleukin (IL)-1 beta expression. Cramoll 1,4 extracted from seeds of the Leguminosae Cratylia mollis Mart., is a lectin with antitumor and lymphocyte mitogenic activities. Animals (Nine-week-old male albino Wistar rats, Rattus norvegicus) were treated with intraperitoneal injection of Cramoll 1,4 (235 mu g ml(-1) single dose) and, 7 days later, spleen lymphocytes were isolated and analyzed for intracellular ROS, cytosolic Ca(2+), and IL-6, IL-10, and IL-1 mRNAs. Cell viability was investigated by annexin V-FITC and 7-amino-actinomycin D staining. The data showed that in lymphocytes activated by Cramoll 1,4 the increase in cytosolic and mitochondrial ROS was related to higher cytosolic Ca(2+) levels. Apoptosis and necrosis were not detected in statistically significant values and thus the lectin effector activities did not induce lymphocyte death. In vivo Cramoll 1,4 treatment led to a significant increase in IL-1 beta but IL-6 and -10 levels did not change. Cramoll 1,4 had modulator activities on spleen lymphocytes and stimulated the Th2 response.
Resumo:
Paracoccidioides brasiliensis (Pb) is a dimorphic fungal pathogen that causes paracoccidioidomycosis the most severe deep mycosis from South America Although cell mediated immunity is considered the most efficient protective mechanism against Pb infection mechanisms of innate immunity are poorly defined Herein we investigated the interaction of the complement system with high and low virulence isolates of Pb We demonstrated that Pb18 a high virulence Pb Isolate when incubated with normal human serum (NHS) induces consumption of hemolytic complement and when immobilized promotes binding of C4b C3b and C5b-C9 Both low virulence (Pb265) and high virulence (Pb18) isolates consumed C4 C3 and mannose-binding learn (MBL) of MBL-sufficient but not of MBL-deficient serum as revealed by deposition of residual C4 C3 and MBL on immune complexes and mannan However higher complement components consumption was observed with Pb265 as compared with Pb18 The suggested relationship between low virulence and significant complement activation properties of Pb isolates was confirmed by the demonstration that virulence attenuation of Pb 18 results in acquisition of the ability to activate complement Conversely reactivation of attenuated Pb18 results in loss of the ability to activate complement Our results demonstrate for the first time that Pb yeasts activate the complement system by the lectin pathway and there is an Inverse correlation between complement activating ability and Pb virulence These differences could exert an influence on Innate immunity and severity of the disease developed by infected hosts (C) 2010 Elsevier Ltd All rights reserved