982 resultados para HIGHLY EXCITED-STATES
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We analyze the capability of the next generation of linear electron-positron colliders to unravel the spin and couplings of excited leptons predicted by composite models. Assuming that these machines will be able to operate both in the e+e- and e-γ modes, we study the effects of the excited electrons of spin 1/2 and 3/2 in the reactions e-γ → e-γ and e+e- → γγ. We show how the use of polarized beams is able not only to increase the reach of these machines, but also to determine the spin and couplings of the excited states.
Resumo:
Spin coherence generation in an ensemble of negatively charged (In,Ga)As/GaAs quantum dots was investigated by picosecond time-resolved pump-probe spectroscopy measuring ellipticity. Robust coherence of the ground-state electron spins is generated by pumping excited charged exciton (trion) states. The phase of the coherent state, as evidenced by the spin ensemble precession about an external magnetic field, varies relative to spin coherence generation resonant with the ground state. The phase variation depends on the pump photon energy. It is determined by (a) pumping dominantly either singlet or triplet excited states, leading to a phase inversion, and (b) the subsequent carrier relaxation into the ground states. From the dependence of the precession phase and the measured g factors, information about the quantum dot shell splitting and the exchange energy splitting between triplet and singlet states can be extracted in the ensemble.
Resumo:
Resonant states are multiply excited states in atoms and ions that have enough energy to decay by emitting an electron. The ability to emit an electron and the strong electron correlation (which is extra strong in negative ions) makes these states both interesting and challenging from a theoretical point of view. The main contribution in this thesis is a method, which combines the use of B splines and complex rotation, to solve the three-electron Schrödinger equation treating all three electrons equally. It is used to calculate doubly excited and triply excited states of 4S symmetry with even parity in He-. For the doubly excited states there are experimental and theoretical data to compare with. For the triply excited states there is only theoretical data available and only for one of the resonances. The agreement is in general good. For the triply excited state there is a significant and interesting difference in the width between our calculation and another method. A cause for this deviation is suggested. The method is also used to find a resonant state of 4S symmetry with odd parity in H2-. This state, in this extremely negative system, has been predicted by two earlier calculations but is highly controversial. Several other studies presented here focus on two-electron systems. In one, the effect of the splitting of the degenerate H(n=2) thresholds in H-, on the resonant states converging to this threshold, is studied. If a completely degenerate threshold is assumed an infinite series of states is expected to converge to the threshold. Here states of 1P symmetry and odd parity are examined, and it is found that the relativistic and radiative splitting of the threshold causes the series to end after only three resonant states. Since the independent particle model completely fails for doubly excited states, several schemes of alternative quantum numbers have been suggested. We investigate the so called DESB (Doubly Excited Symmetry Basis) quantum numbers in several calculations. For the doubly excited states of He- mentioned above we investigate one resonance and find that it cannot be assigned DESB quantum numbers unambiguously. We also investigate these quantum numbers for states of 1S even parity in He. We find two types of mixing of DESB states in the doubly excited states calculated. We also show that the amount of mixing of DESB quantum numbers can be inferred from the value of the cosine of the inter-electronic angle. In a study on Li- the calculated cosine values are used to identify doubly excited states measured in a photodetachment experiment. In particular a resonant state that violates a propensity rule is found.
Resumo:
Upconversion (UC) is a promising option to enhance the efficiency of solar cells by conversion of sub-bandgap infrared photons to higher energy photons that can be utilized by the solar cell. The UC quantum yield is a key parameter for a successful application. Here the UC luminescence properties of Er3+-doped Gd2O2S are investigated by means of luminescence spectroscopy, quantum yield measurements, and excited state dynamics experiments. Excitation into the maximum of the 4I15/2 → 4I13/2 Er3+ absorption band around 1500 nm induces very efficient UC emission from different Er3+ excited states with energies above the silicon bandgap, in particular, the emission originating from the 4I11/2 state around 1000 nm. Concentration dependent studies reveal that the highest UC quantum yield is realized for a 10% Er3+-doping concentration. The UC luminescence is compared to the well-known Er3+-doped β-NaYF4 UC material for which the highest UC quantum yield has been reported for 25% Er3+. The UC internal quantum yields were measured in this work for Gd2O2S: 10%Er3+ and β-NaYF4: 25%Er3+ to be 12 ± 1% and 8.9 ± 0.7%, respectively, under monochromatic excitation around 1500 nm at a power of 700 W/m2. The UC quantum yield reported here for Gd2O2S: 10%Er3+ is the highest value achieved so far under monochromatic excitation into the 4I13/2 Er3+ level. Power dependence and lifetime measurements were performed to understand the mechanisms responsible for the efficient UC luminescence. We show that the main process yielding 4I11/2 UC emission is energy transfer UC.
Resumo:
The fluorescence of a polyanionic conjugated polymer can be quenched by extremely low concentrations of cationic electron acceptors in aqueous solutions. We report a greater than million-fold amplification of the sensitivity to fluorescence quenching compared with corresponding “molecular excited states.” Using a combination of steady-state and ultrafast spectroscopy, we have established that the dramatic quenching results from weak complex formation [polymer(−)/quencher(+)], followed by ultrafast electron transfer from excitations on the entire polymer chain to the quencher, with a time constant of 650 fs. Because of the weak complex formation, the quenching can be selectively reversed by using a quencher-recognition diad. We have constructed such a diad and demonstrate that the fluorescence is fully recovered on binding between the recognition site and a specific analyte protein. In both solutions and thin films, this reversible fluorescence quenching provides the basis for a new class of highly sensitive biological and chemical sensors.
Resumo:
We evaluate the coincidence spectra in the nonmesonic weak decay (NMWD) Lambda N -> nN of Lambda hypernuclei (4)(Lambda)He, (5)(Lambda)He, (12)(Lambda)C, (16)(Lambda)O, and (28)(Lambda)Si, as a function of the sum of kinetic energies E(nN)=E(n)+E(N) for N=n,p. The strangeness-changing transition potential is described by the one-meson-exchange model, with commonly used parametrization. Two versions of the independent-particle shell model (IPSM) are employed to account for the nuclear structure of the final residual nuclei. They are as follows: (a) IPSM-a, where no correlation, except for the Pauli principle, is taken into account and (b) IPSM-b, where the highly excited hole states are considered to be quasistationary and are described by Breit-Wigner distributions, whose widths are estimated from the experimental data. All np and nn spectra exhibit a series of peaks in the energy interval 110 MeV < E(nN)< 170 MeV, one for each occupied shell-model state. Within the IPSM-a, and because of the recoil effect, each peak covers an energy interval proportional to A(-1) , going from congruent to 4 MeV for (28)(Lambda)Si to congruent to 40 MeV for (4)(Lambda)He. Such a description could be pretty fair for the light (4)(Lambda)He and (5)(Lambda)He hypernuclei. For the remaining, heavier, hypernuclei it is very important, however, to consider as well the spreading in strength of the deep-hole states and bring into play the IPSM-b approach. Notwithstanding the nuclear model that is employed the results depend only very weakly on the details of the dynamics involved in the decay process proper. We propose that the IPSM is the appropriate lowest-order approximation for the theoretical calculations of the of kinetic energy sum spectra in the NMWD. It is in comparison to this picture that one should appraise the effects of the final-state interactions and of the two-nucleon-induced decay mode.
Resumo:
Electron spin transient nutation (ESTN) experiments show that the spin multiplicity of the ground state of C-60(3-) in frozen solution is a doublet with S = 1/2. In purified samples, there is no evidence for excited states or other species with higher multiplicity. In the anions Of C120On- (n = 2, 3, 4), where the CW EPR experiments have shown that a mixture of species is present, ESTN experiments confirm that a doublet with S = 1/2 is associated with the 3- anion and triplets with S = 1 are associated with the 2- and 4- anions. A weak nutation peak attributable to m(s) = -1/2 1/2 transitions within a quartet state may arise from association of anions with spins of 1/2 and 1 in solute aggregates.
Resumo:
We theoretically study the Hilbert space structure of two neighboring P-donor electrons in silicon-based quantum computer architectures. To use electron spins as qubits, a crucial condition is the isolation of the electron spins from their environment, including the electronic orbital degrees of freedom. We provide detailed electronic structure calculations of both the single donor electron wave function and the two-electron pair wave function. We adopted a molecular orbital method for the two-electron problem, forming a basis with the calculated single donor electron orbitals. Our two-electron basis contains many singlet and triplet orbital excited states, in addition to the two simple ground state singlet and triplet orbitals usually used in the Heitler-London approximation to describe the two-electron donor pair wave function. We determined the excitation spectrum of the two-donor system, and study its dependence on strain, lattice position, and interdonor separation. This allows us to determine how isolated the ground state singlet and triplet orbitals are from the rest of the excited state Hilbert space. In addition to calculating the energy spectrum, we are also able to evaluate the exchange coupling between the two donor electrons, and the double occupancy probability that both electrons will reside on the same P donor. These two quantities are very important for logical operations in solid-state quantum computing devices, as a large exchange coupling achieves faster gating times, while the magnitude of the double occupancy probability can affect the error rate.
Resumo:
The most important processes for the creation of S12+ to S14+ ions excited states from the ground configurations of S9+ to S14+ ions in an electron cyclotron resonance ion source, leading to the emission of K X-ray lines, are studied. Theoretical values for inner-shell excitation and ionization cross sections, including double KL and triple KLL ionization, transition probabilities and energies for the deexcitation processes, are calculated in the framework of the multi-configuration Dirac-Fock method. With reasonable assumptions about the electron energy distribution, a theoretical K$\alpha$ X-ray spectrum is obtained, which is compared to recent experimental data.
Resumo:
We study strongly correlated ground and excited states of rotating quasi-2D Fermi gases constituted of a small number of dipole-dipole interacting particles with dipole moments polarized perpendicular to the plane of motion. As the number of atoms grows, the system enters an intermediate regime, where ground states are subject to a competition between distinct bulk-edge configurations. This effect obscures their description in terms of composite fermions and leads to the appearance of novel quasihole ground states. In the presence of dipolar interactions, the principal Laughlin state at filling upsilon=1/3 exhibits a substantial energy gap for neutral (total angular momentum conserving) excitations and is well-described as an incompressible Fermi liquid. Instead, at lower fillings, the ground state structure favors crystalline order.
Resumo:
Higher plants have evolved a well-conserved set of photoprotective mechanisms, collectively designated Non-Photochemical Quenching of chlorophyll fluorescence (qN), to deal with the inhibitory absorption of excess light energy by the photosystems. Their main contribution originates from safe thermal deactivation of excited states promoted by a highly-energized thylakoid membrane, detected via lumen acidification. The precise origins of this energy- or LlpH-dependent quenching (qE), arising from either decreased energy transfer efficiency in PSII antennae (~ Young & Frank, 1996; Gilmore & Yamamoto, 1992; Ruban et aI., 1992), from alternative electron transfer pathways in PSII reaction centres (~ Schreiber & Neubauer, 1990; Thompson &Brudvig, 1988; Klimov et aI., 1977), or from both (Wagner et aI., 1996; Walters & Horton, 1993), are a source of considerable controversy. In this study, the origins of qE were investigated in spinach thylakoids using a combination of fluorescence spectroscopic techniques: Pulse Amplitude Modulated (PAM) fluorimetry, pump-probe fluorimetry for the measurement of PSII absorption crosssections, and picosecond fluorescence decay curves fit to a kinetic model for PSII. Quenching by qE (,..,600/0 of maximal fluorescence, Fm) was light-induced in circulating samples and the resulting pH gradient maintained during a dark delay by the lumenacidifying capabilities of thylakoid membrane H+ ATPases. Results for qE were compared to those for the addition of a known antenna quencher, 5-hydroxy-1,4naphthoquinone (5-0H-NQ), titrated to achieve the same degree of Fm quenching as for qE. Quenching of the minimal fluorescence yield, F0' was clear (8 to 130/0) during formation of qE, indicative of classical antenna quenching (Butler, 1984), although the degree was significantly less than that achieved by addition of 5-0H-NQ. Although qE induction resulted in an overall increase in absorption cross-section, unlike the decrease expected for antenna quenchers like the quinone, a larger increase in crosssection was observed when qE induction was attempted in thylakoids with collapsed pH gradients (uncoupled by nigericin), in the absence of xanthophyll cycle operation (inhibited by DTT), or in the absence of quenching (LlpH not maintained in the dark due to omission of ATP). Fluorescence decay curves exhibited a similar disparity between qE-quenched and 5-0H-NQ-quenched thylakoids, although both sets showed accelerated kinetics in the fastest decay components at both F0 and Fm. In addition, the kinetics of dark-adapted thylakoids were nearly identical to those in qEquenched samples at F0' both accelerated in comparison with thylakoids in which the redox poise of the Oxygen-Evolving Complex was randomized by exposure to low levels of background light (which allowed appropriate comparison with F0 yields from quenched samples). When modelled with the Reversible Radical Pair model for PSII (Schatz et aI., 1988), quinone quenching could be sufficiently described by increasing only the rate constant for decay in the antenna (as in Vasil'ev et aI., 1998), whereas modelling of data from qE-quenched thylakoids required changes in both the antenna rate constant and in rate constants for the reaction centre. The clear differences between qE and 5-0H-NQ quenching demonstrated that qE could not have its origins in the antenna alone, but is rather accompanied by reaction centre quenching. Defined mechanisms of reaction centre quenching are discussed, also in relation to the observed post-quenching depression in Fm associated with photoinhibition.
Resumo:
This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.
Resumo:
The J = 2−1 microwave spectrum of six isotopic species of HSiF3 has been observed and assigned in excited states of five of the six fundamental vibrations. The assignment is based on relative intensities, double resonance experiments, and trial anharmonic force constant calculations. Analysis of the spectra leads to experimental values for five of the constants, all three l-doubling constants qt, one Fermi resonance constant φ233, and one zeta constant. The harmonic force field has been refined to all the available data on vibration wavenumbers, centrifugal distortion constants, and zeta constants. The cubic anharmonic force field has been refined to the data on and qt constants, using two models: a valence force model with two cubic force constants for SiH and SiF stretching, and a more sophisticated model. With the help of these calculations, the following equilibrium structure has been determined: re(SiH) = 1.4468(±5) Å, re(SiF) = 1.5624(±1) Å, HSiF = 110.64(±3)°,
Resumo:
Two Multifunctional photoactive complexes [Re(Cl)(CO)(3)-(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+) = N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy = 2,2'-bipyridine) were synthesized. characterized. and their redox and photonic properties were investigated by cyclic voltammetry: ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions: and time-resolved resonance Raman spectroscopy. The first reduction step of either complex Occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans -> cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3) -> MeDpe(+) (MLCT)-M-3 (MLCT = metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximate to 42 (73%) and approximate to 430ps (27%). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3) -> MeDpe(+) and Re(CO)(3) -> bpy (MLCT)-M-3 states, from which a MeDpe(+) localized intraligand 3 pi pi* excited state ((IL)-I-3) is populated with lifetimes of approximate to 0.6 and approximate to 10 ps, respectively. The 3IL state undergoes a approximate to 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle Structural variations. The complex [Re(MeDpe+)(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.