994 resultados para HELIUM-LIKE IONS
Resumo:
Calculations of energy levels, radiative rates and lifetimes are reported for 17 F-like ions with 37≤Z≤53. For brevity, results are only presented among the lowest 113 levels of the 2s22p5, 2s2p6, 2s22p43ℓ, 2s2p53ℓ, and 2p63ℓ configurations, although the calculations have been performed for up to 501 levels in each ion. The general-purpose relativistic atomic structure package (grasp) has been adopted for the calculations, and radiative rates (along with oscillator strengths and line strengths) are listed for all E1, E2, M1, and M2 transitions of the ions. Comparisons are made with earlier available experimental and theoretical energies, although these are limited to only a few levels for most ions. Therefore for additional accuracy assessments, particularly for energy levels, analogous calculations have been performed with the Flexible Atomic Code (fac), for up to 72 259 levels. Limited previous results are available for radiative rates for comparison purposes, and no large discrepancy is observed for any transition and/or ion.
Resumo:
Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method`.
Resumo:
Dielectronic recombination (DR) has been studied in highly charged He-like Ti ions using an electron beam ion trap. X-rays emitted from radiative recombination (RR) and DR were observed as the electron beam energy was scanned through the resonances. Differential DR resonant strengths were determined by normalizing the DR x-ray intensity to the RR intensity using theoretical RR cross sections. KLn (2 less than or equal to n less than or equal to 5) resonant strengths were determined for He-like Ti ions. The differential resonant strengths were calibrated without reference to any theoretical DR calculations while the electron energy scale was derived with reference to the well-known energy for ionization of the He-like and H-like ions from the ground state. Calibration in this way facilitates a more exacting comparison between theory and experiment than has been reported previously. To facilitate this comparison, total and differential theoretical resonance strengths were calculated. These calculations were found to be in good agreement with the measured results.
Resumo:
The magnetic dipole transitions between fine structure levels in the ground term of Ti-like ions, (3d(4)) D-5(2)-D-5(3), were investigated by observation of visible and near-UV light for several elements with atomic numbers from 51 to 78. The wavelengths are compared with theoretical values we recently calculated. The differences between the present calculations and measurements are less than 0.6%. The anomalous wavelength stability predicted by Feldman, Indelicato and Sugar [J. Opt. Soc. Am. B 8, 3 (1991)] was observed. We attribute this anomalous wavelength stability to the transition from LS to JJ coupling and the asymptotic behavior of the transition energies in the intermediate coupling regime.
Resumo:
This paper reports a systematic study of the dependence on atomic number of the dielectronic recombination resonance strengths for He-like, Li-like and Be-like ions. Recent measurements of dielectronic recombination resonance strengths for the KLL and KLM manifolds for iron, yttrium, iodine, holmium, and bismuth are also described. The resonance strengths were normalized to calculated electron impact ionization cross sections. The measured resonance strengths generally agree well with theoretical calculations using the distorted wave approximation. However, KLM resonance strength measurements on high atomic number open-shell ions gave higher values than those suggested by calculations. Using recently measured data, along with existing results, scaling laws have been generated as a function of atomic number for He-like, Li-like, and Be-like ions in the KLL and KLM manifolds.
Resumo:
A simple model has been developed within the independent-particle model (IPM) based on the Bohr-Lindhard model and classical statistical model. Cross sections for transfer ionization of helium by ions A(q+) (q = 1-3) are calculated for impact energies between 10 and 6000 keV/u. The calculated cross sections are in good agreement with the experimental data of helium by He(1-2)+ and Li(1-3)+.
Resumo:
Photon yields for the 1s(2)-1s2p (He-alpha) transition of He- like ions have been measured for laser irradiated, thin foils of Ti, V and Fe. The laser pulses were of 0.527 mum wavelength and of either 80 or 300 ps duration. The data shows significant shot-to-shot variation but the Ti data is broadly consistent with previous results. In this work, we extend the previous results to include, new elements, longer pulse lengths and yields measured for emission from both surfaces of the foils. We compare our data to simulations using a hydrodynamic code and a collisional radiative model.
Resumo:
We discuss a parity nonconserving asymmetry in the cross section of KLL dielectronic recombination of polarized electrons on the hydrogenlike ions with Z less than or similar to 60. This effect is strongly enhanced because of the near degeneracy of doubly excited 2l2l(') states of opposite parity in He-like ions. For ions with Z similar to 30 the asymmetry is of the order of 10(-9). For Z approximate to 48 a level crossing takes place, leading to the PNC asymmetry of -1.3x10(-8), which is 10(8) times greater than the basic strength of the weak interaction in atoms.
Resumo:
Recent progress using the VULCAN laser at the Rutherford Appleton Laboratory to pump X-ray lasing in nickel-like ions is reviewed. Double pulse pumping with similar to 100 ps pulses has been shown to produce significantly greater X-ray laser output than single pulses of duration 0.1-1 ns. With double pulse pumping, the main pumping pulse interacts with a pre-formed plasma created by a pre-pulse. The efficiency of lasing increases as there is a reduced effect of refraction of the X-ray laser beam due to smaller density gradients and larger gain volumes, which enable propagation of the X-ray laser beam along the full length of the target. The record shortest wavelength saturated laser at 5.9 nm has been achieved in Ni-like dysprosium using double pulse pumping of 75 ps duration from the VULCAN laser. A variant of the double pulse pumping using a single similar to 100 ps laser pulse and a superimposed short similar to 1 ps pulse has been found to further increase the efficiency of lasing by reducing the effects of over-ionisation during the gain period. The record shortest wavelength saturated laser pumped by a short similar to 1 ps pulse has been achieved in Ni-like samarium using the VULCAN laser operating in chirped pulse amplified (CPA) mode. Ni-like samarium lases at 7.3 nm. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
Resumo:
Fluorescence yields are reported for 3lnl' Rydberg series members in He-like ions of N, O and Ne. Results are presented for singlet series members with n values between 3 and 9, i.e. up to the region of overlap with the states belonging to the 4l4l' manifold in these atoms. This data is required, for example, for the interpretation of charge-exchange experiments involving bare N, O and Ne nuclei. Fluorescence yields, averaged over all 3lnl' singlet states, larger than 50% are obtained from about n = 7.
Resumo:
Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation ? spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46l)/Zi, where Zi is the net charge of the ion and l is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.
Resumo:
We have employed the Dirac R -matrix method to determine electron-impact excitation cross sections and effective collision strengths in Ne-like Kr 26+ . Both the configuration-interaction expansion of the target and the close-coupling expansion employed in the scattering calculation included 139 levels up through n = 5. Many of the cross sections are found to exhibit very strong resonances, yet the effects of radiation damping on the resonance contributions are relatively small. Using these collisional data along with multi-configuration Dirac–Fock radiative rates, we have performed collisional-radiative modeling calculations to determine line-intensity ratios for various radiative transitions that have been employed for diagnostics of other Ne-like ions.
Resumo:
Following an earlier observation in F VI we identified the line pair 1s2s2p^2 {^5P}-1s2s2p3d {^5P^0} , {^5D^0} for the elements N, O, Mg, and tentatively for A1 and Si in beam-foil spectra. Assignment was established by comparison with Multi-Configuration Dirac-Fock calculations along the isoelectronic sequence. Using this method we also identified some quartet lines of lithium-like ions with Z > 10.
Resumo:
Extended cusp-like regions (ECRs) are surveyed, as observed by the Magnetospheric Ion Composition Sensor (MICS) of the Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE) instrument aboard Polar between 1996 and 1999. The first of these ECR events was observed on 29 May 1996, an event widely discussed in the literature and initially thought to be caused by tail lobe reconnection due to the coinciding prolonged interval of strong northward IMF. ECRs are characterized here by intense fluxes of magnetosheath-like ions in the energy-per-charge range of _1 to 10 keV e_1. We investigate the concurrence of ECRs with intervals of prolonged (lasting longer than 1 and 3 hours) orientations of the IMF vector and high solar wind dynamic pressure (PSW). Also investigated is the opposite concurrence, i.e., of the IMF and high PSW with ECRs. (Note that these surveys are asking distinctly different questions.) The former survey indicates that ECRs have no overall preference for any orientation of the IMF. However, the latter survey reveals that during northward IMF, particularly when accompanied by high PSW, ECRs are more likely. We also test for orbital and seasonal effects revealing that Polar has to be in a particular region to observe ECRs and that they occur more frequently around late spring. These results indicate that ECRs have three distinct causes and so can relate to extended intervals in (1) the cusp on open field lines, (2) the magnetosheath, and (3) the magnetopause indentation at the cusp, with the latter allowing magnetosheath plasma to approach close to the Earth without entering the magnetosphere.
Resumo:
Die Elektronen in wasserstoff- und lithium-ähnlichen schweren Ionen sind den extrem starken elektrischen und magnetischen Feldern in der Umgebung des Kerns ausgesetzt. Die Laserspektroskopie der Hyperfeinaufspaltung im Grundzustand des Ions erlaubt daher einen sensitiven Test der Quantenelektrodynamik in starken Feldern insbesondere im magnetischen Sektor. Frühere Messungen an wasserstoffähnlichen Systemen die an einer Elektronenstrahl-Ionenfalle (EBIT) und am Experimentierspeicherring (ESR) der GSI Darmstadt durchgeführt wurden, waren in ihrer Genauigkeit durch zu geringe Statistik, einer starken Dopplerverbreiterung und der großen Unsicherheit in der Ionenenergie limitiert. Das ganze Potential des QED-Tests kann nur dann ausgeschöpft werden, wenn es gelingt sowohl wasserstoff- als auch lithium-ähnliche schwere Ionen mit einer um 2-3 Größenordnung gesteigerten Genauigkeit zu spektroskopieren. Um dies zu erreichen, wird gegenwärtig das neue Penningfallensystem SPECTRAP an der GSI aufgebaut und in Betrieb genommen. Es ist speziell für die Laserspektroskopie an gespeicherten hochgeladenen Ionen optimiert und wird in Zukunft von HITRAP mit nierderenergetischen hochgeladenen Ionen versorgt werden.rnrnSPECTRAP ist eine zylindrische Penningfalle mit axialem Zugang für die Injektion von Ionen und die Einkopplung eines Laserstrahls sowie einem radialen optischen Zugang für die Detektion der Fluoreszenz. Um letzteres zu realisieren ist der supraleitende Magnet als Helmholtz-Spulenpaar ausgelegt. Um die gewünschte Genauigkeit bei der Laserspektroskopie zu erreichen, muss ein effizienter und schneller Kühlprozess für die injizierten hochegeladenen Ionen realisiert werden. Dies kann mittels sympathetischer Kühlung in einer lasergekühlten Wolke leichter Ionen realisiert werden. Im Rahmen dieser Arbeit wurde ein Lasersystem und eine Ionenquelle für die Produktion einer solchen 24Mg+ Ionenwolke aufgebaut und erfolgreich an SPECTRAP in Betrieb genommen. Dazu wurde ein Festkörperlasersystem für die Erzeugung von Licht bei 279.6 nm entworfen und aufgebaut. Es besteht aus einem Faserlaser bei 1118 nm der in zwei aufeinanderfolgenden Frequenzverdopplungsstufen frequenzvervierfacht wird. Die Verdopplerstufen sind als aktiv stabilisierte Resonantoren mit nichtlinearen Kristallen ausgelegt. Das Lasersystem liefert unter optimalen Bedingeungen bis zu 15 mW bei der ultravioletten Wellenlänge und erwies sich während der Teststrahlzeiten an SPECTRAP als ausgesprochen zuverlässig. Desweiteren wurde eine Ionequelle für die gepulste Injektion von Mg+ Ionen in die SPECTRAP Falle entwickelt. Diese basiert auf der Elektronenstoßionisation eines thermischen Mg-Atomstrahls und liefert in der gepulsten Extraktion Ionenbündel mit einer kleinen Impuls- und Energieverteilung. Unter Nutzung des Lasersystems konnten damit an SPECTRAP erstmals Ionenwolken mit bis zu 2600 lasergekühlten Mg Ionen erzeugt werden. Der Nachweis erfolgte sowohl mittels Fluoreszenz als auch mit der FFT-ICR Technik. Aus der Analyse des Fluoreszenz-Linienprofils lässt sich sowohl die Sensitivität auf einzelne gespeicherte Ionen als auch eine erreichte Endtemperatur in der Größenordnung von ≈ 100 mK nach wenigen Sekunden Kühlzeit belegen.