991 resultados para H-like Ti
Resumo:
The metallization stack Ti/Pd/Ag on n-type Si has been readily used in solar cells due to its low metal/semiconductor specific contact resistance, very high sheet conductance, bondability, long-term durability, and cost-effectiveness. In this study, the use of Ti/Pd/Ag metallization on n-type GaAs is examined, targeting electronic devices that need to handle high current densities and with grid-like contacts with limited surface coverage (i.e., solar cells, lasers, or light emitting diodes). Ti/Pd/Ag (50 nm/50 nm/1000 nm) metal layers were deposited on n-type GaAs by electron beam evaporation and the contact quality was assessed for different doping levels (from 1.3 × 1018 cm−3 to 1.6 × 1019 cm−3) and annealing temperatures (from 300°C to 750°C). The metal/semiconductor specific contact resistance, metal resistivity, and the morphology of the contacts were studied. The results show that samples doped in the range of 1018 cm−3 had Schottky-like I–V characteristics and only samples doped 1.6 × 1019 cm−3 exhibited ohmic behavior even before annealing. For the ohmic contacts, increasing annealing temperature causes a decrease in the specific contact resistance (ρ c,Ti/Pd/Ag ~ 5 × 10−4 Ω cm2). In regard to the metal resistivity, Ti/Pd/Ag metallization presents a very good metal conductivity for samples treated below 500°C (ρ M,Ti/Pd/Ag ~ 2.3 × 10−6 Ω cm); however, for samples treated at 750°C, metal resistivity is strongly degraded due to morphological degradation and contamination in the silver overlayer. As compared to the classic AuGe/Ni/Au metal system, the Ti/Pd/Ag system shows higher metal/semiconductor specific contact resistance and one order of magnitude lower metal resistivity.
Resumo:
The superplastic deformation behavior and superplastic forming ability of the Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) in the supercooled liquid region were investigated. The isothermal tensile results indicate (hat the BMG exhibits a Newtonian behavior at low strain rates but a non-Newtonian behavior at hiqh-strain rates in the initial deformation stage. The maximum elongation reaches as high as 1624% at 656 K. and nanocrystallization was found to occur during the deformation process. Based cm the analysis on tensile deformation. a gear-like micropart is successfully die-forged via a superplastic forgings process. demonstrating that the BMG has excellent workability in the supercooled liquid region. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Titanium containing wormhole-like mesoporous silicas, denoted Ti-HMS, synthesized both via the hydrothermal synthesis route and the post synthesis grafting technique, known as molecular designed dispersion, have been successfully applied in the gas phase oxidation of Toluene to CO and CO2. Selectivity towards CO2 for all catalysts, at temperatures between 400-600degreesC, was above 80%. Benzene and benzaldehyde were observed at temperatures above 450degreesC, but in very low concentrations. The conversion of toluene was shown to increase significantly when the V-TEX/N-MESO ratios were increased from 0.07 to 0.84. No significant difference in catalytic activity was observed for catalysts prepared via the different synthesis techniques. The catalytic activity also depends on the concentration of tetrahedrally coordinated titanium atoms and not on the total concentration of titanium in the catalyst.
Influência das espécies ativas na absorção de intersticiais durante a carbonitretação a plasma do TI
Resumo:
Physical-chemical properties of Ti are sensible to the presence of interstitial elements. In the case of thermochemical treatments plasma assisted, the influence of different active species is not still understood. In order to contribute for such knowledge, this work purposes a study of the role played by the active species atmosphere into the Ar N2 CH4 carbonitriding plasma. It was carried out a plasma diagnostic by OES (Optical Emission Spectroscopy) in the z Ar y N2 x CH4 plasma mixture, in which z, y and x indexes represent gas flow variable from 0 to 4 sccm (cm3/min). The diagnostic presents abrupt variations of emission intensities associated to the species in determined conditions. Therefore, they were selected in order to carry out the chemical treatment and then to investigate their influences. Commercial pure Ti disks were submitted to plasma carbonitriding process using pre-established conditions from the OES measurements while some parameters such as pressure and temperature were maintained constant. The concentration profiles of interstitial elements (C and N atoms) were determined by Resonant Nuclear Reaction Analysis (NRA) resulting in a depth profile plots. The reactions used were 15N(ρ,αγ)12C and 12C(α,α)12C. GIXRD (Grazing Incidence X-Ray Diffraction) analysis was used in order to identify the presence of phases on the surface. Micro-Raman spectroscopy was used in order to qualitatively study the carbon into the TiCxN1 structure. It has been verified which the density species effectively influences more the diffusion of particles into the Ti lattice and characteristics of the layer formed than the gas concentration. High intensity of N2 + (391,4 nm) and CH (387,1 nm) species promotes more diffusion of C and N. It was observed that Hα (656,3 nm) species acts like a catalyzer allowing a deeper diffusion of nitrogen and carbon into the titanium lattice.
Resumo:
The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.
Resumo:
The thermal evolution process of RuO2–Ta2O5/Ti coatings with varying noble metal content has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry. The gel-like films prepared from alcoholic solutions of the precursor salts (RuCl3·3H2O, TaCl5) onto titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600 °C. The evolution of the mixed oxide coatings was followed by the mass spectrometric ion intensity curves. The cracking of retained solvent and the combustion of organic surface species formed were also followed by the mass spectrometric curves. The formation of carbonyl- and carboxylate-type surface species connected to the noble metal was identified by Fourier transform infrared emission spectroscopy. These secondary processes–catalyzed by the noble metal–may play an important role in the development of surface morphology and electrochemical properties. The evolution of the two oxide phases does not take place independently, and the effect of the noble metal as a combustion catalyst was proved.
Resumo:
This paper explores how we may transform peoples’ perceived access to cultural participation by exploiting the possible relationships between place, play and mobile devices. It presents SCOOT; a location-based game in order to investigate how aspects of game-play can be employed to evoke at once playful and culturally meaningful experiences of place. In particular this paper is concerned with how the portable, communicative and social affordances of mobile phones are integral to making a “now everything looks like a game” experience.
Resumo:
This exegesis examines how a writer can effectively negotiate the relationship between author, character, fact and truth, in a work of Creative Nonfiction. It was found that individual truths, in a work of Creative Nonfiction, are not necessarily universal truths due to individual, cultural, historical and religious circumstances. What was also identified, through the examination of published Creative Nonfiction, is a necessity to ensure there are clear demarcation lines between authorial truth and fiction. The Creative Nonfiction works examined, which established this framework for the reader, ensured an ethical relationship between author and audience. These strategies and frameworks were then applied to my own Creative Nonfiction.