986 resultados para Grits and wastes
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behavior over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.
Resumo:
Background Over the years, food industry wastes have been the focus of a growing interest due to their content in high added-value compounds. A good example are the olive oil by-products (OOBP), which retain a great amount of phenolic compounds during olive oil production. Their structure and biological properties justify their potential use as antioxidants in other food products. The efficient recovery of phenolic compounds has been extensively studied and optimized in order to maximize their reintroduction in the food chain and contribute to a higher valorization and better management of wastes from olive oil industry. Scope and approach This paper reviews the most representative phenolic compounds described in OOBP and their biological properties. New extraction procedures to efficiently recover these compounds and the most advanced chromatographic techniques that have been used for a better understanding of the phenolic profile of these complex matrices are also referred. Finally, this paper reports the main applications of OOBP, with emphasis on their phenolic content as natural antioxidants for food applications. Key findings and conclusions Besides their antioxidant activity, phenolic compounds from OOBP have also shown antimicrobial and antitumoral properties. Their application as food antioxidants requires new extraction techniques, including the use of non-toxic solvents and, in a pilot scale, the use of filters and adsorbent resins. The inclusion of phenolic compounds from OOBP in some food matrices have improved not only their antioxidant capacity but also their sensory attributes.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
Thesis submitted for the Degree in Master of Energy and Bioenergy
Resumo:
Doctoral dissertation for Ph.D. degree in Sustainable Chemistry
Resumo:
Considering the fundamental importance of preserving the built heritage and of ensuring the good performance achieved by incorporating ceramic particles in lime mortars in ancient times, it is important to study solutions that use materials the available today, in order to produce mortars intended to repair and replace the old ones. Solutions incorporating industrial ceramic waste might be profitable for several reasons, namely for economic, environmental and technical aspects. In this paper, seven ceramic waste products collected from ceramics factories are characterized. Their mineralogy, dimensional features and pozzolanicity were determined. Three of these products, with different particle size fractions (obtained directly from milling, dust only and fragment fractions only), were selected, incorporated into air lime mortars, and their mechanical strength was determined. In the present work, evidence of mechanical efficiency, when common sand or air lime were partially replaced by ceramic wastes, was made clear, drawing attention to the sustainability of this type of mortars, hence, encouraging further research.
Resumo:
Magnetospirillum (M.) sp. strain Lusitani, a perchlorate reducing bacteria (PRB), was previously isolated from a wastewater treatment plant and phylogenetic analysis was performed to classify the isolate. The DNA sequence of the genes responsible for perchlorate reduction and chlorite dismutation was determined and a model was designed based on the physiological roles of the proteins involved in the pcr-cld regulon. Chlorite dismutase (Cld) was purified from Magnetospirillum sp. strain Lusitani cells grown in anaerobiosis in the presence of perchlorate. The protein was purified up to electrophoretic grade using HPLC techniques as a 140 kDa homopentamer comprising five ~28 kDa monomers. Steady-state kinetic studies showed that the enzyme follows a Michaelis-Menten model with optimal pH and temperature of 6.0 and 5°C, respectively. The average values for the kinetic constants KM and Vmax were respectively 0.56 mM and 10.2 U, which correspond to a specific activity of 35470 U/mg and a turnover number of 16552 s-1. Cld from M. sp. strain Lusitani is inhibited by the product chloride, but not by dioxygen. Inhibition constants KiC= 460 mM and KiU= 480 mM indicated that sodium chloride is a weak mixed inhibitor of Cld, with a slightly stronger competitive character. The X-ray crystallography structure of M. sp. strain Lusitani Cld was solved at 3.0 Å resolution. In agreement with cofactor content biochemical analysis, the X-ray data showed that each Cld monomer harbors one heme b coordinated by a histidine residue (His188), hydrogen-bonded to a conserved glutamic acid residue (Glu238). The conserved neighboring arginine residue (Arg201) important for substrate positioning, was found in two different conformations in different monomers depending on the presence of the exogenous ligand thiocyanate. UV-Visible and CW-EPR spectroscopies were used to study the effect of redox agents, pH and exogenous ligands on the heme environment.
Resumo:
The pavement recycling allows to reuse reclaimed asphalt pavement (RAP) or other waste materials in new asphalt mixtures for road construction or rehabilitation, thus re-ducing the use of virgin materials (aggregates and bitumen). Thus, the main aim of this study is to minimize the use of natural resources through the reuse of three waste materials: HDPE, mo-tor oil and RAP. Different amounts of waste motor oil and HDPE were added to an asphalt binder with 50% aged bitumen. The best solutions to produce the modified binders (4.5 to 5.0% HDPE and 10 % waste motor oil) performed as well as a conventional bitumen although they only used 35 % of virgin bitumen. Asphalt mixtures with 50 % RAP were produced with the selected modified binders, improving some characteristics in comparison with conventional asphalt mixtures. In conclusion, these wastes can revive in new asphalt mixtures.
Resumo:
The aim of this study is evaluating the interaction between several base pen grade asphalt binders (35/50, 50/70, 70/100, 160/220) and two different plastic wastes (EVA and HDPE), for a set of new polymer modified binders produced with different amounts of both plastic wastes. After analysing the results obtained for the several polymer modified binders evaluated in this study, including a commercial modified binder, it can be concluded that the new PMBs produced with the base bitumen 70/100 and 5% of each plastic waste (HDPE or EVA) results in binders with very good performance, similar to that of the commercial modified binder.
Resumo:
Microbial processes have been used as indicators of soil quality, due to the high sensitivity to small changes in management to evaluate, e.g., the impact of applying organic residues to the soil. In an experiment in a completely randomized factorial design 6 x 13 + 4, (pot without soil and residue or absolute control) the effect of following organic wastes was evaluated: pulp mill sludge, petrochemical complex sludge, municipal sewage sludge, dairy factory sewage sludge, waste from pulp industry and control (soil without organic waste) after 2, 4, 6, 12, 14, 20, 28, 36, 44, 60, 74, 86, and 98 days of incubation on some soil microbial properties, with four replications. The soil microbial activity was highly sensitive to the carbon/nitrogen ratio of the organic wastes. The amount of mineralized carbon was proportional to the quantity of soil-applied carbon. The average carbon dioxide emanating from the soil with pulp mill sludge, corresponding to soil basal respiration, was 0.141 mg C-CO2 100 g-1 soil h-1. This value is 6.4 times higher than in the control, resulting in a significant increase in the metabolic quotient from 0.005 in the control to 0.025 mg C-CO2 g-1 Cmic h-1 in the soil with pulp mill sludge. The metabolic quotient in the other treatments did not differ from the control (p < 0.01), demonstrating that these organic wastes cause no disturbance in the microbial community.
Resumo:
The main goal of this special issue was to gather contributions dealing with the latest breakthrough methods for providing value compounds and energy/fuel from waste valorization. Valorization is a relatively new approach in the area of industrial wastes management, a key issue to promote sustainable development. In this field, the recovery of value-added substances, such as antioxidants, proteins, vitamins, and so forth, from the processing of agroindustrial byproducts, is worth mentioning. Another important valorization approach is the use of biogas from waste treatment plants for the production of energy. Several approaches involving physical and chemical processes, thermal and biological processes that ensure reduced emissions and energy consumptions were taken into account. The papers selected for this topical issue represent some of the mostly researched methods that currently promote the valorization of wastes to energy and useful materials ...
Resumo:
Two vegetable wastes, cork bark and grape stalks, were investigated for the removal of methylene blue from aqueous solution. The effects of contact time, dye concentration, pH, and temperature on sorption were studied relative to adsorption on a commercially-activated carbon. The highest adsorption yield was obtained within the pH range 5 to 10 for grape stalks and 7 to 10 for cork bark. The sorption kinetics of dye onto activated carbon and grape stalks was very fast. Kinetics data were fitted to the pseudo-first and second order kinetic equations, and the values of the pseudo-second-order initial rate constants were found to be 1.69 mg g-1 min-1 for activated carbon, 2.24 mg g-1 min-1 for grape stalks, and 0.90 mg g-1 min-1 for cork bark. Langmuir maximum sorption capacities for activated carbon, grape stalks, and cork bark for methylene blue estimated by the Orthogonal Distance Regression method (ODR) were 157.5 mg g-1, 105.6 mg g-1, and 30.52 mg g-1, respectively. FTIR spectra indicated that carboxylic groups and lignin play a significant role in the sorption of methylene blue. Electrostatic forces, n-p interactions, cation-p, and p-p stacking interactions contribute to methylene blue sorption onto grape stalks and cork bark. Grape stalks can be considered an efficient biosorbent and as a viable alternative to activated carbon and ion-exchange resins for the removal of methylene blue
Resumo:
Specific combustion programs (Gaseq, Chemical equilibria in perfect gases, Chris Morley) are used to model dioxin and formation in the incineration processes of urban solid wastes. Thanks to these programs, it is possible to establish correlations with the formation mechanisms postulated in literature on the subject. It was found that minimum oxygen quantities are required to obtain a significant formation of these compounds and that more furans than dioxins are formed. Likewise, dioxin and furan formation is related to the presence of carbon monoxide, and dioxin and furan distribution among its different compounds depends on the chlorine and hydrogen relative composition. This is due to the fact that an increased chlorine availability leads to the formation of compounds bearing a higher chlorine concentration (penta-, hexa-, hepta-, and octachlorides), whereas an increased hydrogen availability leads to the formation of compounds bearing a lower chlorine number (mono, di-, tri-, and tetrachlorides).